AD-AO72 395 OPERATING SYSTEMS INC WOODLAND CA F/6 9/2

A KNOWLEDGE=-BASED AUTOMATED MESSAGE UNDERSTANDING METHODOLOGY Fe==ETC(U)
JUN 79 6 M SILVA» D L DWIGGINS: S 6 BUSBY F30602-77-c-o1qq
UNCLASSIFIED RADC=TR=79=133

|

=
A B
=
L25 e e

WILSAS SNOILVOIUNI UHONVAUV NV d0d ADOTOUOHLIW
ONIUNVLSHHANI dOVSSHN d4LVNOLNY dISVE-dOUATMONN V

ey

_FILE_COPY,

bOC

N\

ll‘\lNC-111-7119|3N3
Final Technical Report
June 1979

A KNOWLEDGE-BASED AUTOMATED
MESSAGE UNDERSTANDING METHODOLOGY
FOR AN ADVANCED INDICATIONS SYSTEM

Operating Systems, Inc.

r
G.M.T. Silva
D.L. Dwiggins
S.G. Busby e
J.L. Kuhns

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 1344l

79 08 06 014

This report has been reviewed by the RADC Information Office (OI)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign
nations. :

RADC~TR-79~133 has been reviewed and is approved for publication.

APPROVED:)MW/ 6;5

ANDREW S. KOZAK
Project Engineer

Zﬂ/ﬂ‘v’ @m

HOWARD DAVIS
Technical Director
Intelligence and Reconnaissance Division

" MJQ;;7:Z:E:;‘ ™
FOR THE COMMANDER: ,7;

JOHN P. HUSS
Acting Chief, Plans Office

APPROVED:

1f your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organiza-
tion, please notify RADC (IRDE) Griffiss AFB NY 13441. This will assist
us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

1

T —

-

UNCLASSIFIED

SICUHI'\ k.L ASSIFICATION OF THIS PAG (H'hon I‘.r. brtered)

READ INSTRUCTIONS

7). REPORT DOCUMENTATION PAGE BEITRS o i Son
12 OVY CC S10 CIPIENT' ATALOG NU [
TR_79_]33 GOV A £ SS) NNOM 13 S CATALOG MBTF

i ¥ (¥

W - v r . RED 1
FA KNONLEDGE_BASED_AUTOMATEDJMES&AGL_yNDER\TANDING Final fechnical Refawt .
METHODOLOGY FOR AN_ADVANCED TNDICATIONS \YQTEM p 12 Jul 77 =17 Jan 79]
e e __“ ,;.__-_»-_ - ”i Secty S—

N/A
ﬁ;=;a$iUﬂWr B — I8 CONTRACT OR GRANT NUMBERS)]
[1 M. T. /Silva \ J.LV’Kuhns | C /

G.M
D.L. Dwiggins \}- s IS
S.G '

r}ﬂgﬂz 77- c,dua) ke
; Busby >

L BT RFORMING ORGANIZATION NAME ANO ADORESS e IJAAM rax TEMENT PROJECT. TASK
A " : AH(A WORK UNIT NUMBERS.-
Operating Systems, Inc. T iy

- ’)
21031 Ventura Boulevard E 3.-
Woodland Hills CA 91364 . (16 4594F238 |
—

" ONYNOL\.INC OfH\f NAMF AND ADDRESS

Rome Air Development Center (IRDE)
Griffiss AFB NY 13441

—————————— il

T MON I TORING AGENCY NAME & ADDRESS 1T different from Controlling Office) | '8 SECURITY CLASS (of this report
Same CLASSIFIED

DECLASSIFICAY ON DOWNGRADING
SCREDULE

T6 ODISTHRIBUTION STATEMENT (of this RKeport!

Approved for public release; distribution unlimited.

B st i e ——— e —————————— o s ———— . ——
17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different trom Report)

Same

18 SUPPLEMENTARY NOTES

RADC Project Engineer: Andrew S. Kozak (IRDE)

W v(!\ w‘ﬂr\\ Continue on reverse side of ne .-;-n-n any feniffv by ok numbe
6ntell!gence Data Pro(o<<1nq Loaic Prnqrmmnhul
ata Base Generation

Natural Language Processing
Artificial Intelligence
Computational Inquiﬂtic<

IR 7"! ‘ \' ilrvt W oreverNe &t i-” \eces Iy My Pl Ak numbte

his report desuv1hos an RAD(\ponsnuvd effort related to the development of
a technology based upon a computer "understanding” of natural language, with
the aim of deriving fixed-format problem-oriented information records from
the narrative text of intelligence messages in support of I&W functions.

The introductory section provides an overview of the concepts that serve as a
foundation for the RADC developmental program for both interactive and auto-

mated cxploitation of the content of intelligence messages., summarizes the \

yORM 0 ~
0D 3% 1473 UNCLASSIFIED N@‘

SECURITY CLASSIFICATION OF THIE PAGE When Data

311 994 P

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Item 20 (Cont'd)

"

work performed under the current effort, and presents our general conclusions.fv
y

Section 2 describes some of the fundamental concepts underlying message text
analysis. It discusses the structure of event reports as viewed from four
different perspectives; develops the concept of an "event", which emerges as
the logical unit of analysis and becomes the basis for describing intelligence
information; and presents the "template" as an event-centered information
structure.

ke

Section 3 describes the design and implementation of the Event Representation
Language (ERL), which is centered around the notion of “template” and embodies
both the declarative and procedural knowledge requisite for the complete
representation of events and their properties. ERL is embedded in the program-
ming language Prolog, an interactive programming language based upon a simple
proof procedure involving a subset of classical logic. The method of encoding
templates in Prolog is discussed in detail. This is followed by an explanation
of the ERL procedures developed for Event Record Synthesis, and a detailed
example of how ERL template representations accomplish the semantic interpre-
tation process, that maps the syntactic structures output by the parser onto
event records.

Section 4 comprises an overview of MATRES [I, which is implemented on the

PDP 11/45 under RSX-11D. The base language for all the programs -- except

the ERL compiler -- is Forth. The ERL Compiler is coded in SPITBOL, a dialect
of SNOBAL 4, which was chosen because of its excellent facilities for
compiler writing.

Part II of the report presents a detailed description of the implementation of
MATRES II. [Its data structures and algorithms for the sentence input and
grammar processing vocabulary and the capabilities in the area of morphology
are described. The implementation of the ERL evaluation process, including b
the abstract machine which is the target language of ERL, is described in 1
Section 4. The ERL Compiler, which is the only non-Forth module, is discussed
in Section 5.

T

A supplementary report not for publication is on file.

i
-~
N
e TR w A e I

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dats Entered’

P

TABLE OF CONTENTS
PART I - MATRES II SYSTEM DESIGN !
1.0 Introduction and SUMMATYcccieiiieeiniansncensesesacnssntncacasracnees LR e RN R 1 vi
1.1 INtrOdUCHION iucrveesanrainsensesssnasssansssssonsassssssannsansessss TR S T TS SR | 1
FeR BUBMIEIY o crerinnsirssussnsussnssssasssatsssis i id St s M RS A SA LA SO R o s A ARt AN TN I BN S AL SN RARAR 2 :
1.8 Conclusionscasaseecsensssrensansesssssssssss Aisearinisasans RS SRS TAERAR SRR NS S s Faeaan SOIAS NS 4 “
2.0 Message Text Analysis: FUNAMENAl CONCOPTS ..uuciiiiueeeiireresseeessseesonsecersaesssaenee 6 H
2.1 The Structure of Event REPOItS ..cciciicerentnncrtntcrserintecniseserencssessssrorssssssisassnnes O
2.1.1 The Macro Level.cccceueee PO S hoxvadsn AR R R 6 3
2.1.2 The Message Levael........ R AARSS Y Ea e s s au s ARG SN AR A AT AR AT RS AR TR RS SRS SIAR S 5 1
2.1.3 The Event Level.ccccieiiiincecrnnannens S oo T G e e S N R S 6
L T S S s e ¥ :
2.2 The Concept of an Event.........ccccieeiieiiiiniinirsniiniiene. T s SR LR 7
2.3 The Concept of a Templateccerueerreceenns SerEaveta Vo FUEE RO 12 i
2.3.1 The Template as an Analytical TOOL .iiiiiiiiiiiieireiiiinirniiiinieieeiin 2 |
2.3.2 The Intarnal Structure of the Template.......ccceieiciiitiiiniininieecicrernnenn 16
2.3.2.1 Structure of the Template: Descriptive
Elements 15
2.3.2.2 Structure of the Template: Procedural
Components 16
3.0 The Event Representation LANQUAQGE .iiiieeriiiriiinitiietiiiiiisteseetensretteretatacneecasanenns 18
3.1 INtroduction..ccceeeciecreraececncnanes SeaET TR AR AR R SO SRR e 18
3.2 How Templates are Exprassed in Prolog..ccciveies, PIRECRRNEE HERC . SR T 19
3.3 ERL Procedures for Event Record Synthesisiiieciiiiiininiiiinene. 20
3.3.1 The ‘build_ER’ Procedure........cceeeveeeenenn ORI P 21 ..
G811 INPUt I8 & SENTENCE cusiitistsinisinomisssstensessrtvsssssrasss 21 t
38.3.1.2 Input is @ NOminalized SENTENCE cecevviieeererenereenenseseenenes 21 X
3.3.1.3 Input is 8 NOUNPNFASE .iuicitncetnentecncnresecossssssesneesesssasasssans w N A
3.3.2 The 'conStruct’ ProCOAUIe......cccccieeiimmmiisrirmmerresmsiessessniressnsensssssesmenenss 21 '
3.3.2.1 Construct Clauses Embodying Event t
Templates s "
3.3.2.2 Construct Clauses for Templates Representing Physical ‘
Objects 24
3.3.2.3 Construct Clausas Relating to Date and Time b
Concepts 24 v
3.3.3 Proceduras for Filling in Template SIOtScccvciieciiiiccniinninenneen. 24 i
0 R SR (T | e R S S R s S 24
3.3.3.2 ’'date’..ciciciccinenne AT TSR A LS ATV SRR TS 24 4
R R RO U AL LoD DU RO 2a E
IR TR 1 R R 1S e B et O 24 b
3.3.3.5 ’equipment’....... TS T R AT T A ST SR 1SS VIR AT A 24
8.3.3.6 location'.....eeien R SRR NE R RO RRRS 24 g
8.3.3.7 'MISSION' wuiiiiiiitirrnnnnassenisitsiisiiiinnisie NN R— 26 it
3.3.3.8 'nationelity’'........... RERRESS e RS 25 i1
8839 'TOHJECT (iiisninsiisnesessrissesassiies ST LSS IS RO (ORI 26 5
B88. 30 TPEtH v e IR A S 26 !
LR R T LGSR R R S SR LS e ey 26 ,‘
3.3.3.12 'source’ ..cceeeecinenanns ST S R SRR P S RS 25 1
8.8.8.13 "Sla0INGDANE" ciiciirrnnirimvnisisiscmnssssrvsTisst s eI SR 25
i

B.8.8. 14 "BULDIIBHION" 1 iscnamiisimassnismmemauieisssssmisamee S

9:3.3.15 "them’' (The tNFEAL) . .uccsissiesssssimasistssrstvasnsinssacsssssssnsssnsinss 26

S.8.9. 16 "UMP .ccicciiiacirainiismnions AT et e S e 26

3.3.4 Other Procedures.......... = S S SRS RSN ATS A RSN SRR 26
3.3.4.1 'fill_slot'....... e) A anEhAnsantrkE AT RS AT S SR SO 26

3.3.4.2 'find_feat'......ccceecrenennen A S by PR S U s 26

Q.8.4.8 'HND_t _REME" crvssserserirmssanssesasansnssssse i himens LR O e R 27

3.3.4.4 'Mind_time'......ceereerrees O A SRS Ty 27

3.3.4.6 'test_nhead'cccceveceennrnnenes L SsaaaEs 27

DA LISV cicniinvaniniasiassrasesasassans S I e LR 27

S0 8.7 LISt siinsvisnsassaaisissinsas Ep—— N S S DO 27

3.3.5 Syntactic Normalization Rules......cccccavanae RS R eNAaRR NS 7
3.3.6.1 Nominalizations. SR RO e FeA RTINS PN 27

3.4 Event Record Synthesis, an Exampleccccciecanencee ROREpR ST Baka e 28
3.4.1 The ERL Control Mechanism.......... A SRR AT S 28
3.4.2 Step by Step Description of the Synthesis Process iRy AN 28
3.4.2.1 The Initiation of the Synthesis Process.cccceuennee i Akan 29

3.4.2.2 Activation of Template.......... S L S RROe N 30

3.4.2.3 Instantiating the Arguments of PRECEDE P SRR s 31

3.4.2.4 Interpreting the Syntactic Subject.....ccccceeurennenn A a1

3.4.2.5 Interpreting the Syntactic Object.....ccccceucnrennanns R 33

3.4.2.6 Output of Event Record Synthesis Process. BeAsEE AT 36

4.0 The MATRES 1l System,........ N T TP LR o, RPTTES kbeiIs e D e 36
4.1 Introduction.....ccceeeeeenenes FeteusenserEatIREIIRIEEIS e D s B e 36
4.2 MATRES Il == Functional DeSCrIPtioncccecesesesessceancecscessessesesscetaseses R 36
4.3 \Linguistic Grammar and Lexicon for Aircraft DOMAaIN....cceceeceecescecncsnacrececscnneees 4]
4.3.1 The Grammar.cccocveennares RSN 41
4.3.1.1 The Declarative S@nteNCE. ,.cccciveeeeecscesecesrorsrosrorenerscnceseanses 41

4.3.1.2 The Simple Sentence........ I AR A AR ST w Bl

4.3.1.3 The Noun Phrase......c.cc.eeee RIS A FEB R R JeTe AT 4]

4.3.1.4 The Verb GrouUp...ciciesierccssnsessscosascossssssssssessesssseasss A 42

4.3.1.5 Adverbials......cceviurecnnnenns AT PSS T RS S SNSRI 42

4.3.1.6 Passive Sentences.......... SPRTSHREPRNN 43

4 3.2 The Lexicon. ...cccuecrcscencsnees seavEsTbETe ORI we 43

BA THE NMATRES 11 Pl vttt st e suss s s st reoueesses s \EUsess st 1o iesssssesvttssesssvves 44
4.4.1 General DeSCription...icccvecicieiiircsisassssssssssssassssessscasccssens AR 44
4.4.1.1 Arc Types. ..ccccrersrnnne S EPRU D U SIS RTEL SR 45

4.4.1.2 Conditions....... Y SR S iy SR a5

4.4.1.3 Actions.ccesees MR T MU S, — a5

4.4.2 The Parsing Strategy.eeeeeee. T N O IR G e R 46
4.4.2.1 The Declarative Sentence.ccceeeeeeeens SR PIN a6

4.4.2.2 The Simple SeNence.cccuveeeerececsnsacsans S IETI et TS S sL N 46

4.4.2.3 The Noun Phrase........cceeeee - TSR R I e Ty R —— 49

4.4.2.4 The Verb Group Net.cccccceescscsccnsssesessssassasssscscsescessecssscsces 49

4.5 Template Descriptor Selection: Methodological I1ssues PP 72
4.6.1 User-Related Considerations.....ccccceeeene FROOp— RPN S e 72
4.56.2 Linguistic CoNSId@rAtIONS. .ciiiiiciisesstsnassssssssnsasesesesssssnsesressanse —— 72
4.5.2.1 The 'Deep Case' System.ccccrrereerincrnirane AL AR S 72

4.5.2.2 Presupposition and Entailment.ccciiiiecircarectcncerenseenanee wes 13

4.6.3 The Descriptor System for the Aircraft DOmain ..eeecinienaecienenn 74

6.0 References.......cccosuuennnnn.. i e b b R s 2 ST e 76

PART 11 - MATRES II IMPLEMENTATION

R iU IVETOIUIOTION o covvrrsniinscsininsomimssisninmssenintosntiinsssastsmmsaesanemsane AR e S S 1
2.0 Design of Lexical and ATN Processors............ sssusenansneasenss SsensIRateRsensasaRERR ISR RIR RIS 2
Sy T i e T R e b o e e o S et s L S 2
S.F DUYE SUUGUITOE .. ooviiimiisiniomiersbissoness aaitbinttcons sastEbisysineainesinss AR 2
2.3 Action DETINIVIONScisisinesississisisnasnssassorsinsssassntusissssossernrensseis AR R R 2
2.4 Internal Structure and Algorlthm Specifications ...ccccevevnrieecanacns RisiansERER RIS a4
2.4.1 Layout of Block Storage........... St hrivasihetas tibaer. b aerattre PR 4
2.4.2 Structure of the Input SeNteNCe...cccuurvrcreereceernnrensennes AR eT AR A 4q
2.4.3 Text Input and Sentence Constructionccceevvneene R S T T a4
2.4.4 ATN Processor - Data and Program Structures.........cccccvvieeceeenecenennnnes 86
2.4.4.1 State Structureccccccciceinsencecccecenes S N R L S e 5
2.4.4.2 Arc Structures (by arc type)......... TR P kA s
2.4.5 Operation of the ATN Processor R L e e s 6
2.4.5.1 Algorithms for ATN Processor Elementscccceeuveiencncnciininannes 7
2.4.5.2 Code SITUCTUTrES TOF TOSBTS ... ucicisnssscsssassssossossssassasesasssssansasse 7
3.0 Morphology ...ccccceveennne SR S O SNSRI ST Ra RS Ee SO SNATE NSNS Ao 9
3.1 General.....ccceeu... P e T PR LA W AR SRS . 9
3.2 The FSA Matching Process ... ¢]
3.3 Syntax of FSA........cccevnivnenne saasseoyesisdeTa GessaissasvelsvasE sssrsrssvinaes S - 9
3.4 FSA Program Structuresccceeeerennnecenenees PSRRI R ST 10
3.5 Algorithms for FSA Program Elementscccceveenvececnenes ICER——— asevasssesess TSI 10
3.6 Integration With LeXiCal LOOKUP s.iu.cieicteeitastaeiimecseessessaneseasssnsses. sosesasssessenanne AR
4.0 Event Representation Language Implementation....... AR Y RSN PO — 12
4.1 General.......ccceeennnnene TR T R S SVS TR R AL AR ETED SRR A N e 12
4.2 Strategy......... CaRsssRvE S UL RRER YRS FIES TR R ST AT PR s s L n—— 12
4.3 Data and Procedure Structures.....cccceecececnnnianececnnnes RS S Sy 12
4.3.1 General..........cc... R e g S CEURI g PR, 12
4.3.2 Environmentcccevenieenncrncnncnes ISP SN SUATEES SRR PR S 12
B.3.2.1 STacK STrUCTUIES . cucurirsrserssncosssrensnscarsscssensasascs Tt e 13
A3.2.2 SPOCial REGIETETE (. .inirsnmrnsmissmmsssimisnsrnssssvesasoyics 13
4.3.2.3 Constructed TE@rms ,...cccevceetciivnercenenns A TR VR ST 14
4.3.3 Unification AIQOrithmsccccvueeiiccicicrninieennens IR S 14
4.3.3.1 Derefer@ncing....cccuiccciiiiiiiniiiisicissicecsscsecsens G A 14
B.8. 3.2 ASSIGNMANT c.vssssssvacissssmsassissessssssesversesaein Ve RS S AR 14
H4.3.8.8 TralIOGiccssosossvessorsesssvvennasasessossvens TSRS 14
4.3.3.4 Unification of Arguments ..cc.ccveecieneens S AR TS 186
4.3.4 Compilation of Clauses....... O T R A R ORI R Oy 16
4.3.4.1 Goal Code INStruction DefiNitionNsS .iiviveiiieieeesteerreeencsescneneeees 16
4.3.4.2 Match Code Instruction Definitions ...i.ciceiiieciceiiiieesrcenneens 16
4.3.4.3 Clause and Procedure Control INStrucCtions ..ceciecececeeenennnnnes 7
4.3.4.4 Literalscceevvvunnnn S ST R R T s 19

i1

ety TR ——

- 3

ey

S

b
6.0 Event Representation Language COMPIlEr ... icciieerterecarecsrseseesrencsensaneastnssesssaasssane 20 3
5.1 StrategQy.ccccccecccecececececnsssrrasersncscsnces P e B SR P L - 20 ;
6.2 Internal Data StructuresS.....c.ceceeeee P P e e okasAaesTan Lo WL o 08 20
8.3 Pass 1...cccccecsecncsenasncesssssnas SRS e ay P S T TR ey 20
Bl PASE 2. .ioieissnsiicsisionsinserisanssasesssiatiias . SR SR T :
65.4.1 Main Program ...ccccceeeeeeenes Saeasnes Anaanis xrSaRas s A s, R S R 21 ‘i
6.4.2 Semantic ROULINES ...ccceeerneeeernesrereenennens o serindasy AT BN ot et BN) 21 |9
5.4.3 Auxiliary FUNCLIONS ..cceueeeenecenneeerensenennns Sl P Pl St ol [ooty 22 '
5.5 LimitationS...ccceceennenes SR E TR R M AL Tl e RS e 23 b
6.0 Giossary of Lexical and ATN WOIAS ...ciceecirecicatscsresssnscssssssssessssssosssssssassssssssssnnnne 24 }
6.1 Dynamic Storage accessing Words - PP SRR R DR SRS 24 14
6.2 Lexicon COMPIler...ccccureecenennscnscscenes S T e ah Eausiia SR L R R 24 ;*
6.3 ATN ProCaSSOor .cuivisisissvssassssnsnasasesssenes rsuahrnaen e IR R RO T g 25 { .
6.3.1 Context-Related WoOrds ...cccceeeecerenenee T L S uannenama it dche e vaeina 25 [
6.3.2 Processor AuXiliary WOords ...ccceceeeecsccecrececncnes T S R R T R R 25 ’
6.3.3 ATN Processor Words.....ceceeeeieneescessssenecanne sssessones e PiiansciveuesveiasinaTaA RS 26 i§
6.3.4 Compiler Auxiliary Words.....ce..... sSeisviss e TR TA T SevsstaehtusuaRACRRARS SN S L NIRS 28 |
6.3.5 Compiler Wordscccevvveen . e s R SR 28 &
| 6.4 FSA Morphology WOrdSccveerseerseeesaecsaees TSR s e B e nncshianns 30 ‘L
r 6.4.1 Morphology Processing WOrdsS....ccceeeiecirecneccesstnccrencrssssssernssensenscensenanes 30 1
i 6.4.2 Morphology Compiler Words......cccceceececeennes Shevarent Cesunsnes AT SRR 30 }
; 6.5 Text Input and LexiCal LOOKUP ..eeernriererencreecerncancrnnssoscnnnns A L S 31 f
7.0 ERL Target Machine Glossary of Forth Words T or i S s 33 !“
7.1 Trail Management Wordscccceeceennnee PRI SR enieassES ROIONEIR SR S R S 33 H
7.2 New Global Stack Management Words........cccuueerennnne. cssscsscesanans assssansserssnacsnre 33 }4
7.3 Clause and Procedure Control Instructions.......... seassanes T A PP N PR 33 }
7.4 Dereferencing and Goal Code Words......ceeeeescerececacecnes Ghehesne - A 33 3
7.6 Match Code Instructionscc.... SR R—— P—— SRCUER—— 33 K
7.6 ERL PrimitiveS...ccceceererenens STy PRSI e e T S SIS 36
8.0 GLUE File to connect Parse to Templates - Glossary of Forth ?
Words ..cceeeeneenn 37 :
8.1 Strategy....... SO SORC—— S— RS S e 37 K
8.2 Skeleton Building Wordsccceeeeieenae AR RRRR RN SO R e R R e P s TS 37 'i
8.3 Driver Word......... GeireETEeTenYs eEvaeseRNaREY SRR seEservan R R SR 37 L3
APPENDICES ;l
Appendix A - MATRES Il Program Listings ...c.ccueeees R Al b NS D R et e A-1 ¢
f
1.0 Top-Level System Module...... ST A-1 :
2.0 Lexical and ATN Processing Module......cuueeeeeeenecsnsineninnnisssssisnsnensssens sessesavvavseens A-1 4
3.0 ERL Machineccceeevenennnne B v PP T e ee By ORISR e A-9 l
4.0 ERL Compiler - Pass 1 ..cvcueeucuenne FRREENGIEN ST — e A-14 |
6.0 ERL Compiler - Pass 2 AT e s A-18
6.0 ERL Templates.....cceeerens Srisaree RSN S S BRI gt s R A PSR A-23
iv

Appendix B - Programming in Logic with the Prolog Language............ P e S B B-1
1.0 INEROUUOTION cossvesrsanssssrnasanassessstnasanasasssssssnasanesassasnassss P AR R S PR B-1
2.0 Syntax, Terminology and Informal SemantiCS ...cccceieriairencrrnirescsaseneirnessnsssssssnsensas B-1

2.7 Tarma...ocosesnssnases P o R S e A G S e B-1

2.2 Programs g e rnsauen e b B e G R B BT T e B-3
3.0 Declarative And Procedural SemantiCS....ccceiereriiaierrsiiancncioieicrseresssionsesanierssesesnnns B-&6

3.1 Prolog Control MECNANISIMSuceererenrereerecresssersesscnsesererssssssnsssssssesssssssssssssssnsse B-6
Appendix C - MATRES Il Lexicon............. sivanaien e L T R S C-1
F{0 LOXICOM. asasesrosvsssassasnsasiesinsssson e vadvadenatestaueTin A kA naSessera R AR R AeSERNE do e esan A Estnvatavy C-1
Appendix D - MATRES Il Grammar i s ettt RIS E U S . D-1
Appendix E - Test COrpuS ..cceeecrrareennenes P et R LS R RS o AR S S . E-1
Appendix F - Examples of System Operation.....cccccciivasiesininnesnecsasssseciescressassenssens assss. =1
Appendix G - MATRES |l Operations Sesuesamesy LR R Nevkeereensne AERELTR G-1
1.0 Introductionccceveereneeennnnnnns TR PR PR SRR, SNSER ST TR NS G-1
2.0 Compliling the ERL Templatesccccerveeeerensecrennnnns LA sl Alade™ o= R SRS .G-1
3.0 Running the MATRES System.......cceeenenenes TR TR R s e vtk .G-1

T R W gt Ao AT 1

R Byt TR

XY e

Wen -

Cpetr e e 3 SN PR £-APTTRORO

AT

.,

EVALUATION

The main objective of the work described in this report was to develop a
computer-based technology which would substantially assist the I&W

analyst in reviewing and processing the contents of large volumes of

message traffic.

In particular, this effort focuses on providing a detailed conceptual
.and methodological framework for an advanced event processing system
designed with the aim of distilling significant information elements
from the narrative text of intelligence messages and synthesizing fixed-
format, problem-oriented information structures in support of I&W data
base generation and update functions. These information structures
present information to the analyst in a compact and usable format thus
reducing his burden and making it easier for him to concentrate on
higher-level analytical activities. Specifically, the work described
addresses the issues involved in synthesizing meaning representations
from a’particular class of intelligence messages constituting reports
related to the air activities domain, used by the advanced Indicator

System (AIS) at the NMIC.

The task of teaching a computer to “understand" language and identify
relevant information elements is not a trivial one. It requires the
utilization of advanced technologies involving formal syntactic and
semantic analyses of the sentences of a text, and the development of
techniques for synthesizing appropriate meaning representations in the

form of machine-processable information records.

vi

A system -- designated as a Message Analyzer Testbed and Results Evaluation

System (MATRES) -- is presentea i» the form of three major components:

(1) The Lexical Unit Recognizer, (2) The Augmented Transition Network 2

Parser, and (3) The Event Representation Language Machine. Taken

b ey

together, these components analyze incoming textual reports of events
and, from them, synthesize "event records" (i.e., extract relevant 4
information and store it in event-centered information structures utili-

zable as data base records). The technique employs frame-like "event

templates" for representing general knowledge about event classes.
These are essentially intensional descriptions of events and, as embedded

in the system, they behave as active data structures which drive the

synthesis process. The system, as currently conceived, provides an L%
adequate conceptual basis for a generalized text "understanding" system }f
capable of dealing with intelligence reports describing events involving i
movements and activities of objects comparable to aircraft (i.e., missiles, |

satellites, ships, submarines, etc.). 1

One of the notable features of the system is the use of the programming
language Prolog, a formalism based upon a subset of classical logic,
which lends itself particularly well to the encoding of the logical
argument structure of event descriptions. Recent investigations reported i
in the literature show that Prolog is not only used for the grammatical

description of structures and processes of natural language, but can also

be used as a practical tool and a unifying principal for the description

and manipulation of data bases. The use of Prolog, therefore, deserves at-

tention in any further investication related to automated data base generation.

In conclusion, the approach taken in this investigation is a significant

step in providing a framework for a system whose main purpose is to map

narrative text into information on structures in support of I&W functions.

sretnces A /('/1}(\'/\

ANDREW S. KOZAK ~
Project Engineer

viii

1.0 Introduction and Summary
1.1 Introduction

This report describes an RADC sponsored contractual effort related to the developmeat
of automated analytical tools in support of the I&W analyst.

The task of an intelligence analyst is to predict the future on the basis of information
describing what has happened in the past and what events are currently taking place.
The basic information source for most analysts is intelligence messages, which come in
large volumes from many different originators, largely in the form of narrative text.

The questions the analyst asks himself are: "What is happening?" "What does it mean in
terms of my knowledge about similar events in the past?", "What is going to happen
next?" He Is concerned with certain states of affairs, and events signifying changes in
these states of affairs. His evaluations of incoming information are based on his cogni-
tive models of such states of affairs, the personalities, entities, and processes involved,
and the potentialities and constraints associated with changes in an existing state of
affairs.

Given the volume of information he must sift, and the complexity of the cognitive models
Involved, the difficulties of the analyst’s task are obvious. Aids to support his anaiytical
processes clearly must involve means for distilling the content of incoming information
Into a form which is compact, usable, and compatible with his view of the world.

The work described here Is concerned mainly with the development of a technology for
the automated analysis of unformatted (free-text) with the a.m of transforming it into
fixed-format, problem-oriented records, reflecting its information content. The subject
domain under investigaton is that of air activities.

When reviewing narrative text, the human analyst uses his innate knowledge of Engiish
grammar, as well as his extra-linguistic knowledge of entities such as aircraft, time,
location, and actions -- including all the relevant concepts which can be attributed to or
are implied by such entities -- and extracts those information items which are relevant
to his task.

In order to model this human cognitive activity, the computer must be equipped with
representations of both linguistic and extra-linguistic knowledge, and a means of mani-
pulating such representations for the analysis of text and synthesis of information ele-
ments. The elements must then be presented in a clear and useful format suitable for
the task at hand.

The approach adopted by OSI is based upon current advances in language "understand-
Ing" by computer, as exemplified by work in Computational Linguistics, Artificial Intelii-
gence, Cognitive Psychology, and non-numeric programming technology. A survey of the
field as related to the work reported here can be found in Silva and Montgomery (1978).

Briefly, OSI’'s approach to the problem combines a "bottom-up" data-driven analysis
based upon linguistic and logical principles with a "top-down" conceptually driven
domain-specific interpretation of the structures generated by the input analysis. The
"bottom-up" analysis is carried out by an augmented transition network (ATN) parser,
which uses a dictionary and a grammar of the reporting language to produce a parse
tree showing the constituent structures of the input string and their hierarchical rela-
tionships. The interpretive procedures are embedded in the Event Representation
Language (CR!), which uses domain-specific knowledge stored in permanent data

O e) stadidodtg

St lahas . i

structures called "“templates" to transform the linguistic structures generated by the
parser Into template-derived content representations.

1.2 Summary

This final report presents the results of the exploratory and develecpmental work per-
formed under this contract. Briefly, the work involved extensions and additions to the
simple ATN grammar constructed under a previous contract to accept a wider range of
linguistic structures; the refinement of the notion of "template" as a data structure for
the representation of knowledge about events; the design and implementation of the
Event Representation Language, a language written to explore the use of the “template"
as a knowledge representation technique with which to build systems for automated
language analysis; and finally, the construction and implementation of algorithms for the
automated analysis of narrative text and its subsequent transformation into formal con-
tent representations.

A major effort was devoted to the implementation of MATRES i, the OSI message text
analysis system, which incorporates the technologies mentioned above, and involves the
ability to digest narrative text and systematically transform it into concise, machine
processable content representations, called 'event records’, in which a message can be
viewed from several perspectives: time, location, organization involved, activity type,
etc.

Table 1-1 shows an input sentence and the corresponding event record produced by
MATRES Il

The report is divided into two major parts. Part | deals with system design, while Part Il
describes the implementation of MATRES II.

Section 2 of Part | describes some of the fundamental concepts underlying message
text analysis. Section 2.1 describes the structure of event reports viewed from dif-
ferent perspectives. Four levels of description are distinguished, each corresponding to
a major processing phase.

In Section 2.2, the 'event’ emerges as the logical unit of analysis and becomes the
basis for describing intelligence information. Events have a complex internal structure
and raise special representational issues. OS| has given particular consideration to this
question and has developed an event-centered information structure called a "tem-
plate”, which lends itself particularly well {o the description of events and their associ-
ated concepts. In Section 2.3, the template is first described from the point of view of
the user, stressing those properties which render it particularly useful as an analytical
aid. This is followed by a description of the internal structure of the template.

Section 3 describes the design and implementation of the Event Representation
Language, which is centered around the notion of "template" and embodies both the
declarative and procedural knowledge requisite for the complete representation of
events and their properties. It has the additional advantage of being readily processable
by computer.

ERL is embedded in the programming language Prolog, an Interactive programming
language based upon a simple proof procedure involving a subset of classical logic. We
were fortunate to discover this language at a time when we were searching for a good
representation for the template concepts that we were developing in an intuitive and
Informal way. Prolog gave us not only a natural and perspicuous notation for the uniform
representation of the template concepts, but also provided a feasible and fairly efficient

1-2

Table 1-1 Example Input and Output by MATRES I

TWO UGANDAN AIRCRAFT FROM REGIMENT A1313 AT ENTEBLE
DEPLOYED TO GULU AT 0200Z ON 21 FEBRUARY.

Event: DEPLOY

Object:

<.« EQuipment= UGANDAN ACFT
«..Nationality= UGANDAN
«+..Subordination= FROM REGIMENT A313
...S5tagingbase= AT ENTEBBE
«..Number= TWO
Destination= TO GULU

Time= AT Q2002

Date= CN 21 FEBRUARY

EVENT RECORD COMPLETE.

S S S A S wamp S e = g G —

implementation approach.

Section 3.2 illustrates the method of encoding templates in Prolog. This is followed by
an explanation of the ERL procedures developed for Event Record Synthesis (3.3), and a
detailed example of how ERL template representations accomplish the semantic

Interpretation process, which maps the syntactic structures output by the parser onto
event records (3.2).

Section 4 comprises a brief overview of MATRES I, a description of the scope of the
linguistic grammar and lexicon developed for the aircraft domain, a description of the
MATRES Il parser, and a discussion of some fundamental issues underlying the selection
of template descriptors for a particular subject domain. It concludes with the list of the
descriptors so far identified far the air activities domain.

MATRES Il is implemented on the PDP 11/45 under RSX-11D. The base language for all
the programs -- except the ERL compiler -- is Forth. The ERL compiler is coded in SPIT-
BOL, a dialect of SNOBOL 4, which was chasen because of its excellant facilities for
compller writing.

Part 1l of the report presents a description of the implementation of MATRES Il. Section
2 of Part 1l describes the data structures and algorithms for the sentence input and
grammar processing vocabulary; this vocabulary is essentially an extensive modification
of the MATRES | system. Section 3 describes the capabilities added in the arca of mor-
phology. The implementation of the ERL evaluation process, including the abstract

1-3

- T —
O IOUNGESRS PN —

bt e o i (B e a

T -
bR S e

IO ANt b

S ———

e

machine which Is the target language of ERL, is described in Section 4. The ERL com-
piler, which Is the only non-Forth moduie, Is discussed in Section 6. The last three sub-

sections are intended as a guide to the Forth program files listed in Appendix A, and pro-
vide glossaries of the Words in those files.

Appendices A-G contain program listings of all the MATRES Il modules (A), an introduction
to the programming language Prolog (B), a listing of the aircraft domain lexicon (C), a list-
Ing of the current version of the ATN grammar (D), a sample listing of sentences now

parsed by the MATRES Il System (E), a set of examples of system Input/output (F), and
operating instructions for MATRES 1l at OSI(G).

1.3 Conclusions

The method of approach which 0S| has adopted since the Inception of the RADC Explora-
tory and Developmental program for Automated Data Base Generation has been to look
ahead to the potential capabilities of a future system for both interactive and fully
automated exploitation of the narrative text of intelligence messages, and to develop a

methodology that will remain valid for applications of considerably greater scope than
the one currently under development.

Although MATRES |l is at an early stage of development, it has demonstrated that OS!'s
Initial design concept was sound, and can eventually be developed into a useful opera-
tional tool in support of 1&W functions. The concepts underlying its design and imple-

mentations appear so useful, that the system has already aroused considerable interest
both within and outside the intelligence community.

One of the noteworthy features of MATRES Il is its modular design, which has greatly

facilitated its implementation. In spite of its complexity, MATRES |l was written by a sin-
gle programmer working only half-time in about one year.

There are two aspects of MATRES Il as a language “understanding" system that make it
somewhat unusual, and thus deserve particular mention: first, it operates on a 16-bit
minicomputer, within a quite limited amount of available memory (64K bytes); second, it is
written not in one of the popular Al extensions to LISP, but in Forth, a language designed
for use on small minicomputers which combines a low-level, machine-oriented semantics
with a natural facility for extension of the semantics in a user-defined way. It was
basically those combined properties of Forth, together with its fairly simple "virtual
memory" facility, that has made it possible to implement such a structurally complex
application on a small machine in a relatively short time. As it currently exists, the
MATRES Il system fills the available memory with only a small amount of dynamic space
available for sentence processing; this can be ameliorated with a modest amount of
work, at the cost of noticeably slowing the processing due to virtual memory 1/0.

PR

-

i i ki o e e Wk ime e o

iy ala ks

ceglanl

I ———

T S ———e———— e T

2.0 Message Text Analysis: Fundamental Concepts

In this section we explicate some fundamental concepts related to messag= text
analysis. We begin by a formal description of event reports, which constitute the primary
data of our analysis programs. Next, we consider the notion of ‘event’, which emerges
as the primary unit of analysis, and becomes the basis for the design of the Event
Representation Language described in detail in Section 3. Finally, we present the con-
cept of a 'template’, first as an analytical aid designed to support the analyst in his
task, and second, as an information structure which provides an event-centered frame-
work for the uniform and compact description of event data contained in intelligence
messages.

2.1 The Structure of Event Reports

Work under previous contracts has shown that the formal description of event reports
requires a multi-level approach. Four levels have been identified to date, each involving
a different aspect of event reporting, and each based upon different considerations.

2.1.1 The Macro Level. This level of description involves the composition of reports in
terms of individual messages and is based upon operational considerations.

An ’Event Report’ is defined as a collection of one or more messages transmitted over a
period of time and dealing with the same event. For example, an event report concern-
Ing a specific flight might consist of three messages M1, M2, and M3. M1 might describe
the flight of some as yet unidentified aircraft over some general area. A second mes-
sage M2 might request a change of any one of the flight parameters reported in M1,
while a third message M3 might be a follow-up, adding new information to the aircraft
first reported as 'unidentified’.

If all parameters of an event are clear to the observer at the time of reporting, and can
therefore be reported with certainty, the description of the event usually involves only
one message.

From the point of view of automated computer analysis, a distinction must be made
between those messages that contain new event descriptions (i.e., descriptions of
events reported for the first time), and those that either request changes in the param-
eters of some previously reported event, or add information to previously underspecified
parameters. From an operational point of view, a first report involves creating a new
data element, while requests for change and updates involve changes and/or additions
to an already existing structure.

Let us call the class of messages that lead to the creation of new data elements class
MO, and those that imply changes to the data base class M1. The composition of event
reports at this level can now be formalized in the form of a grammar using BNF notation:

) <Event Report> » <Message>| <Messagelist>
<Messagelist> - <Message> | <Messagelist><and><Message>
<Message> -+ MO0, M1

Work under this contract has focussed mainly on messages of class MO, i.e., reports of
new events. In the next section we examine the structure of such messages from the
point of view of their information content.

2.1.2 The Message Level. This level of description involves the composition of single
messages in terms of classes of events characteristic of a particular subject domain. In
the following paragraphs we shall be concerned only with messages of class MO.

Bl d s sl

o ——— e

e ST SRS SN FINPIRRPSERP NI W .,

L b e

R —

. | —
PRDR. & - -ty

—

Messages can have a complex internal structure comprising header information, followed
by elther formatted, semi-formatted, and/or unformatted (narrative) text portions,
before ending with some special symbols signalling the conclusion of the message.

Since this work is conicerned mainly with the narrative text portions of messages, we
shall describe the messages in terms of three components: a 'pre-text’ component, the |
'text’ component, and a 'post-text’ component. :

The 'text’ component of a single class MO message may contain the description of one
or more new events. Of course, not everything reported in a message text Is a descrip-
tion of an event. There are also objects, and states, and processes, and perhaps other
entities. However, events are of fundamental importance and it is expedient to treat
object, state, and process descriptions as special types of events. (For a full discussion
of the concept of an 'event' see Section 2.2).

ad o

S—

vz

Thus, a message may state that a particular set of aircraft carried out a penetration
flight over some country, and then engaged in some other activity before returning to
homebase. Such a message describes a chain of connected events: a penetration flight, |4
followed by an activity, followed by a return to homebase, all involving the same set of
aircraft. The events reported on in a message need not always be connected as
described in the previous example. It is quite possible for a message to report on
several seemingly unconnected events.

e

The content of a message can now be formaily characterized in terms of the 'event’ as
the primitive unit:

(2) <«Message> + (Pre-text> <Text> <Post-text>
<Text> -+ <Event> | <Eventlist»
¢<Eventlist> » <Event> | <Eventlist> <and»> <Event»
<Event> + el,e2,el3,.....en

Note that <and> is a symbol of the metalanguage and represents a set of operations and
relations on events, while the set of event classes characteristic of the subject domain
covered by the class of reports 'Event Report' defined in (1) above is symbolized by
{e1,....en}.

Wae shall call (2) the 'Messzge Grammar'. It consists of a designated non-terminal <Mes-
sage>, called the 'initial' symbol, a set of non-terminal symbols Vn, the set of given sym-
bols Vt, called terminals, and the four productions in (2).

Vt = {el,e2,e3,....... en)

The set {e1,e2,....en} comprises the 'primitives’ of the 'Message Language’ described in
(2), and will vary from subject domain to subject domain.

Vn = Message, Pre-text, Text, Post-text, Eventlist, Event, and t
- }

!

|

2.1.3 The Event Level. This level involves the description of events in terms of their H
properties, including time, location, action, and object(s) involved in the action. |

Event descriptions take two forms: intensional descriptions, and extensional descrip-
tions.

An intensional description is an abstract description of a class of /ndividuals in terms of
a set of invariant properties common to all members of the class. Thus the intensional
description of the class of flight events would state that all such events are associated
with objects that can fly, have a specific location at some point in time, may involve a

1-6

. Sl - T

mission, and can further be specified in terms of path, altitude, direction, and extent of
flight. It would also state any assoclated inferences, such as, for example, that a flight
event is necessarily preceded by a take-off event.

An extensional description involves one individual, i.e., a unique member of a class of
individuals in the world being modeled. A simple example is the description of a specific
aircraft (e.g., a MiG-21) flying in a given direction (e.g., north), at a particular time (e.g.,
01002).

The representational construct developed for the description of events is the 'template’.
It is an abstract data structure containing a collection of invariant information refliecting
the analyst’s view of the concept it describes. All information represented in templates
Is associated with rules governing its use.

The class of individuals to which an intensional description applies is calied the exten
sion of the general concept described by the template. In the context of Event
Language Recognition, descriptions of individual events are called 'Event Records’. Thus,
the set of event records describing events of the same class, i.e., event records related
to a particular template, constitute the extension of the concept described by the tem-
plate.

Section 2.3 gives a general overview of the template from the the viewpoint of the user
and stresses those features which can serve as an ald to the analyst. This is followed
by a detailed study of the internal structure of the template as the fundamental
knowledge structure for the representation of event data. The criteria for the selection
of the descriptors appropriate for a particular subject domain, and the methodology
employed as applied to the aircraft domain are discussed in detail in Section 4.56.

2.1.4 The Linguistic Level. This brings us to the fourth and last level of description dis-
cussed here, namely to the description of the linguistic structure of narrative text. In
the MATRES Il System, the linguistic structure is defined by means of an augmented
transition network grammar in terms of familiar linguistic categories such as sentence,
nounphrase, verbgroup, prepositional phrase, adverb, and others.

In order ta expedite processing, a number of language specific categories, not usually
found in traditional grammars, were added. Thus, the familiar definition of prepositional
phrase In (a) was augmented to encompass dates (b) and times (c):

(a) pp -» prep + nounphrase
(b) pp » prep + date
(c) pp » prep + time

where 'date’ and 'time’ are non-terminals of the grammar with their own internal struc-
ture. The MATRES Il grammar and its associated lexicon are described in detail in sec-
tion 4.3 of this report.

2.2 The Concept of an Event*

Although the event concept is fundamental in message analysis, no standardized termi-

nology for describing or classifying events exists. Thus, when reference is made to the

parameters of 'event/time/location,” the event concept used is that of a tvpe of

* Thlgconcept was originally developed in Kuhns, et al. (1975) under a previous RADC
contract.

e — et g

'f'-
.t,
?
|
i
t

activity. In another usage 'event' refers to a fact. The event concept in physics is that
of a point in the spacetime continuum, and in mathematical statistics the word 'event’
has the broadest meaning, that of any propaosition, whether true or not. The event con-
cept has even been taken as a primitive (i.e., as undefined) and then used to define the
searies of time points (Weiner 1914; Russell 1956).

To deal with event reports it was necessary to define a 'data semantics' and a
corresponding Fvent Representation Language which, as the name implies, is a special
language for the description of events and event-related concepts, such as objects,
processes, and other entities. This language also has the desirable feature of being
representable in an appropriate formalism (see Section 3), which is amenable to com-
puter processing. This language guides the mapping process which converts narrative
text into formatted event records (see Section 3.4).

By an event we mean roughly either the property that an object has at a point in time or
over a time interval, or a relation that holds among a set of objects or locations at a
point in time or over a time interval.

Events may be gathered into certain event classes called activities, e.g., air activities,
submarine activities, and ground activities. These are characterized as involving certain
types of objects or properties or relations.

We give a classification of events based on conslderations involving sources of reports,
observers of events, and relations and properties involved in events. Time points are
the central element of an event. A discussion of time data as it occurs in natural
language is given in Kuhns and Montgomery (1973) and Kuhns (1975).

The most complicated examples arise in messages containing narrative text. These
Mustrate the variety of problems that arise in defining events and the necessity for
their classification. One example is:

A reliable source reported that water tankers

accompanied by trucks carrying what appears to
be ... have been observed stopping This i3
could indicate that

The initial analysis of the first sentence shows that this involves four levels of events. {
There is first the fact that water tankers were accompanied by trucks, etc.; there is {4
second, the observation of the fact; third, there is the report of the observation (i.e., via i3

the referenced source); and finally, there is the message itself which is a report of a
report. To distinguish these levels, we introduce the notion of a meta-event.

We define a meta-event to be a report of an event. There are two sorts of events
other than meta-events: an observational event which is a direct perception of an event
{often indicated as a visual perception, e.g., '‘observe,’ 'sight’; an electronic perception,
e.g., 'contact’; or a term ambiguous as to the nature of the contact, e.q., ‘identify,’
'detect');¥ and a primitive event which does not involve an observation. The meta-
events themselves are distinguished by orders. A meta-event that reports on an obser-

vational or primitive event is a first order meta-event.

A meta-event that reports on nth order meta-events is an (n+1)th order meta-event.
Thus the previous example message is a second order meta-event reporting a first order

* A special case of an observational event is a designation event where a special
proper name for an object is introduced, e.g., 'an aircraft, designated as MiG-21,...]

-8
-8

meta-event consisting of an observational event of a primitive event.
A similar analysis can be given for the example:

It is reported that two Ugandan F class fighter aircraft
were sighted in the vicinity of 020053230t at
011200 hours.

Here, the originator of the message uses a passive sentence construction rather than
stating the source of the report. This too is a second order meta-event describing a
first order meta-event describing an observational event of a primitive event.

The meta-events can be considered to convey certain pragmatic information that is of
Importance to the intelligence analyst. The most important aspect of this pragmatic
Information relates to the credibility of the event data being reported. Other aspects
are fact of the message transmittal itself, the time and origin of transmittal, etc. The
decision making function related to the pragmatic information involved is one of feed-
back, just as for other sensors: to reorient the data collection, to suspend it, or amplify
it.

Since a message is itself a report of an event, it is a first order meta-event.

A further breakdown is used for primitive events. We distinguish two kinds. An attribu
tive event gives a situation where a particular object¥* or object of a certain type has a
certain attribute (other than spatial location), which may be inherent or temporally con-
strained: i.e., the attribute is true at a certain time, or in a certain time interval.

o TR S

Thus, the example:

PR

the aircraft is Y-class

Is an attributive event. In the notation of the predicate calculus an attributive event is
symbolized as:

e e g e

ke i,

P(x,t) 1)

where x Is the object argument, t is the time argument and P is the attribute that x has
at time t.

e T

The argument-expression 'x' can have a variety of forms through which additional pro-
perties of the object can be expressed -- chiefly through the use of descriptive
phrases.

The second kind of primitive event is called a relational event. This is a situation where
n objects or an object and a location stand in some relation to each other at a certain
time. Positlon data may be absent, but when it occurs with one object-argument, then
the relational event gives either the location relation holding between an object and its
| position at a certain time (e.g., the primitive event described in the second example) or
some other relation between n objects(e.g., 'the aircraft entered Biafran airspace').

ey g g e
i el i

o ——
i

| A relational event is symbolized as:

R(x1,....,xn,t)

‘ * Objects are taken in the broadest sense and include cultural objects (such as
governments, Institutions, etc.), and psychological objects (perceptions, attitudes,
etc.).

where x1,...xn are object or location arguments, and t is the time argument. Among the
relational events Is a class of special interest -- these are events giving a world point
of an object, i.e., its space-time coordinates. Such an event is called a /location event,
or world point event.

Thus, the track of an aircraft, which consists of a set of world points, is a portion of its
world line. For a location event, the expression (2) then takes the form:

L(x,p,t) (3)

where p is the location argument.

Another class of relational events is given by a generalization of (3). These we call
warld point qualifications or location-event-qualifications. Such an event is a two-place
relation (other than location) between an object and a location that holds at a certain
time. Thus, the relation stipulates the activity of an object at a certain point and time,
e.g., an aircraft flying south in the vicinity of ... at In symbols this is expressed as:

Q(x,p.t) (4)
where Q Is the activity engaged in by x at the space-time point (p,t).

In an event record we can consider the world point of an object to be a property of the
object. This property can be defited formally through use of the)\-operator which is
used in logic to introduce new predicates (i.e., names of attributes or relations). Thus,
the world point property corresponding to (3) is written as:

P=()\x) L(x,p,t) 5) |

or as coordinates:

(p.t) = (Ax) L(x,p,1) (6)

For example, in the second example above:
(p,t) = (in the vicinity of 02008 3230E, 011200)

Similarly, a world point qualification can be expressed as a triple giving the space-time
point of the object and its attribute. For this we write:

(p,t,Q) = (Ax) Q(x,p,t) (7)
An example of a world point qualification would be:
(p,t,Q) = (02008 3230E,011200, moving not at all)

In all these formulations, we are treating the time arguments on a logically different level
from the object and location arguments. The reason for this is that time arguments
always occur in event formulations (even though sometimes only implicitly) while other
arguments need not occur.

If an event involves two or more objects or locations it is called simply a non-world point
event, because it is not uniquely classified by object and location. However, many such
events can be reduced into world point events or qualifications. For example, 'John met
Mary at ..."' can be reduced by use of the)\-operator) to either a property of John (and
hence a world point qualification event) or a property of Mary (similarly). Also, for exam-
ple, 'The aircraft flew from London to Paris' splits into two world point events for the
same object -- a departure at London and a (later) arrival at Paris.

A summary of the classification of events is given in Table 2-1.

In the symbolism above, we have broken a primitive event into object, locaticn, and
time-arguments and relations and properties. Indeed, every situation can be so
analyzed. This has been referred to in the literature as thing-splitting [Reichenbach,
1I947]. It is often more natural to introduce events themselves as arguments -- for
example, in the analysis of meta-events or observational events. Thus, a meta-event
can be symbolized as:

R(s,e,t) (8)
which describes a report of e by source s at time t.
Similarly an observational event is:
O(x,e,t) (9)
which describes the observation of e by the observer x at time t.

Table 2-1. Classification of Events

Meta-events
Non-meta events
Observational events
Primitive events
Attributive events
Relational events
World point events (location events)
World point qualification events
(location event qualifications)
Non-world point events, or events involving
two or more objects or locations

— e —— — — —" — — — — — —

The introduction of events (even those corresponding to primitive events) as arguments
In situations can be achieved by certain symbolic devices. This is called event-splitting
(Reichenbach,|947), i.e., the situation is ’split’ conceptually into an event-argument and
an event property. language has various devices for event-splitting, the chief one
being nominalization, e.g., 'arrival,’ and the use of the word 'that’ which flags an event-
argument. ¥

Primitive events can be further concatenated into event chains which are a sequence of
minor events giving an initiation, continuation, or termination of certain major events. For
example, the major events of aircraft penetration could include such minor events as the
initial penetration of airspace, the reaction, and a termination such as the departure or
destruction of the aircraft. Observational events can also be gathered into event
chains. Establishing, maintaining, losing, and regaining contact with an aircraft provides
an example of this. Another use of event chains is the monitoring of minor events to
forecast major events. The definition of interval events, i.e., activities which continue
over an interval of time (as opposed to point events), can be accomplished by reducing
them to point events. This is accomplished by defining an event type, such as flying,

% A formal method for introducing event arguments is described in Kuhns (1975).

1-11

and then stating that an event of this type occurred at every point in a time interval. In
English, interval evenis are usually associated with the progressive tenses. (Verb
tenses furnish important implicit time data of a relative nature (Kuhns and Montgomery
(1973) and Kuhns (1974).

While an observational event involves the perceptional facility of an observer, there are
other events involving the evaluative facility of an observer, source, or person. These
are events dealing with appraisals of an object property, a truth value for occurrence of
an event, and a degree of belief in an event. An example is given by the first message
sentence (above). Thus, the phrase 'what appears to be' flags the evaluation of an
object-property.

The phrase beginning the second sentence 'This could indicate that' flags a hypothetical
event, i.e.,, one that is not asserted as occurring but only as possible or predicated.
Similarly, the phrase 'a reliable source’ is an evaluative component of the message. !t
would seem that these evaluations should be distinguished from affirmative or direct
assertions such as 'determined to be,’ 'confirmed to be,’ 'the previous report is errone-
ous’ even though these can be considered as extreme cases of evaluations, just as any
report can be so considered. We can say that an evaluative component of an event, or
an evaluative event itself {e.g, this could indicate that ...), is one that expresses the
reporters subjective judgment of the information conveyed. These notions are tentative
and should be subject to further study. For the time being, we class an evaluative
event as a special kind of meta-event. It seems that an evaluative component of an
event, such as the appraisal of an object-property, can be analyzed as the conjunction
of an evaluative event and a primitive event, and that this approach can be consistently
carried through.

2.3 The Concept of a Template

In this section the concept of a template is explicated from two points of view. First, the
focus is on those properties which render it particularly useful as an analytical tool;
then, the focus shifts to its internal organization as a knowledge structure for the
representation of event data.

2.3.1 The Template as an Apalytical Tool. In this section we present a general view of
the template as an information structure for the description of event data with particular
emphasis on those features that render it useful to the analyst in his task.

The template as the basic knowledge structure for the compact and uniform representa-
tion of information on entities and events described in intelligence messages provides
the means of coding the analyst's cognitive models in terms of logical data structures
which are susceptible to automated processing.

An event template is composed of a set of information parameters or descriptors which
represent the type of information that answers the set of questions shown in Table 2-2,
which also illustrates the corresponding descriptors of a prototype template.

This Is somewhat of an oversimplification of the template concept for convenience of
presentation, since complex descriptors within the template are actually represented by
pointers to other types of templates: e.g., object templates. Thus for the message
given in example a), an object template reflecting an aircraft description is essentially
embedded in the event description by a pointer reference, as shown in Table 2-3:

TABLE 2-2. Information Parameters of a Prototype Template

QUESTION | DESCRIPTOR EXAMPLE
F__ ,._‘,.,._r__ N —— — —_ ~ S— —
what event type airspace
who agent (or object a Ugandan MIG-21
plus owner)

i
when time of event at 023857 25 April 1978 |
where location of 6 miles from the Kenya |

event occurrence border near Suam
to whom patient, or entity probable reconnaissance
affected by the event | mission

(a) TWO SAAF CAPETOWN-BASED SAG22 ACFT ABE OPERATING OVER THE
INDIAN OCEAN.

It is interesting to note that message a) is incomplete in terms of the prototype template
specification outlined in Table 2-2. Conspicuously absent is a time descriptor.*

For the formal description of the event in (&) to be complete, a time descriptor element
must be satisfied. The absence of this element can be signalled to the analyst to indi-
cate that this element must be supplied for the information representation to be com-
plete. Thus, intra -template relations -- the set of relations connecting descriptors
within a template -- provide an important means of alerting analysts to the missing infor-
mation elements in data structures constituting subparts of the network of templates
which represents an analyst’s cognitive mode!l of a state-of-affairs.

Another set of relations which can be very useful to the analyst are relations between
templates, or inter -template relations.

For example, an aircraft cannot fly uniess it has taken off, cannot land unless it has
been flying, must be in flight if it has taken off and has not landed or been destroyed.
Thus a TAKE-OFF is a template which represents a necessary predecessor event to a
FLIGHT event. On the other hand, a LAND event is a possible, but not obligatory succes~
sor to a FLIGHT event, for the object involved in the flight may have changed course, or
may have been destroyed before landing.

Inter-template relations predict the normal, expected, ordering of events in the air
activities world. Any violation of these expectations can serve as a warning to the
analyst that some external force has altered the predicted course of events. It is
therefore important that the analyst be alerted to any deviation from the expected.

% Also a separate template because of the complexity of most time descriptors, which
are derived only partially from explicitly stated times as in the Table 2-2 example;
they must often be reconstructed from the tense of the internal verbs, time
operators such as 'currently’, which point to information in the message header or
the textual context of the time referent, and the internal structure of a time
descriptor, which may read 'at 10 minute intervals for a period of 6 hours'.

1-13

b

Table 2-3 Content Representation for Sentence (a).

EVENT DESCRIPTION

UNIT REPRESENTED: EVENT

+

|

|

|

I

!

|

|

| EVENT TYPE: BE ACTIVE

|

R) v S S .

| |

| REGION: THE INDIAN OCEAN |

i |

| |

| |

I V

| + - -~ - - o e +
1 {
I |
S| ATRCRAFT DESCRIPTION |
il |
| | UNIT REPRESENTED: OBJECT |
I | OBJBCI TYPE: AIRCRAFT |
| G |
| | TYPE: SA622 |
| | SUBORDINATION: SOUTH AFRICAN FLEET AIR FORCE [
I 1 BASE: CAPETOWN-BASED |
| | SET SPECIFICATION: TWO |
e |
' R S Al g S e e ek i S S o s e | S i S L Y S S-S s e . i i S S S S S s Sl S S S S G e - +
|

!

Accordingly, the explicated network of inter template relations, both obligatory and
optional, provides an additional means of alerting the analyst to the implications of an
event, as well as to related events which may furnish data elements missing in the tem-
plate currently being processed.

In summary, the application of template technology to the analysis of narrative text can
provide an important analytical aid from the following five points of view:

e Templates constitute a powerful means for distilling the content of verbose tex-
tual messages into a compact format.

e Templates are logical information structures which can be used to represent the
analyst’s cognitive modeis of events and states of affairs.

e Inter and Intra template relations can assist the analyst in recognizing missing
elements of information and predicting future events.

1-14

e Templates provide a discrete representation of an event which lends itself readily
to statistical analysis, as in indications monitoring applications for (&W.

e Event data available from the TIME and LOCATION descriptors of templates can be
exploited to drive automatic plotting of ship, submarine, and aircraft tracks.

2.3.2 The Internal Structure of the Template.

Information contained in templates is of two types: declarative information and pro-
cedural information. We begin our discussion with a preliminary specification of the
declarative elements of the template and the relations between those elements. Next,
we present the procedural components of the template and consider the operations they
perform.

2.3.2.1 Structure of the Template: Descriptive Elements Essentially, a template is a
data structure which has a unique "name" and an ordered set of "slots" filled by
"descriptors". Template "names" serve as identifiers and refer to the entity described
by the template. Examples of template names in the air activities domain are: BE
ACTIVE, FLY, DEPLOY, ARRIVE, AIRCRAFT, and DTG (date-time group).

The substructure of a template and its relations to other templates is defined in its
descriptor slots. Descriptors bear special meaning relations to the central concept.
Each descriptor slot names some property of that concept. For example, most event
templates involve the descriptor slot "Object", which names the relation of the entity
which fills this slot to the event. In general, descriptors are of several types. Some
may assign an object to membership in a category (such as "is an aircraft"); others may
state an object’s functional role in a complex event (the "Source" of a particular flight);
yet others may express the time and place of an event ("at 01156Z"; "along the River
Kwai").

Each descriptor slot has a name which is unique within the template. Associated with
each descriptor slot is a set of one or more statements which constrain what may "“fill"
the corresponding slot in the representation of an individual entity. These statements
will be referred to as "filler specifications". Fiiler specifications then, give linguistic
information, i.e., they specify how a particular descriptor can be realized in the sub-
language. A filler specification indicates the possible deep-structure syntactic environ-
ments for a given descriptor as well as the properties of the items to which the rules
which map syntactic trees onto meaning representations are sensitive. Thus, the
description associated with the 'Object’ descriptor in the DEPLOY temptate for the air
activities domain, would specify that the object is normally an aircraft. In the descrip-
tion of an individual event of the DEPLOY class, this is further specified as some specific
aircraft, (e.g., a Nairobi-based F-4 Phantom fighter). The descriptors assaciated with
the DTG template, on the other hand, specify the permitted range of values for its com-
ponents (see Table 2-4). For example, the day in a particular month must lie within the
lower limit of 1 and an upper limit equal to the length of the corresponding month. A day
number of 77 would be outside the permissible range of variation for this descriptor. If
such an anomaly is discovered, it must be brought to the attention of the analyst operat-
ing the system.

Any descriptor of a template can be defined as a separate template when its internal
description is important to the analyst and is of sufficient complexity to warrant a
separate representation. For instance, the template for the DEPLOY event class incor-
porates a descriptor "Object", whose attribute, in this template, is "aircraft". But "air-
craft” in itself is a complex notion of I&W significance and is represented by a template

1-15

of its own (see Table 2-3 abaove).

The template as a unit for representing knowledge, therefore, is complex and extensive.
Rather than being of the order of a single property or relation attributed to the entity
described, it is an n-place hierarchical relational definition of a concept with optional
pointers indicating relations with other templates.

In summary, the descriptive elements incorporated in a template represent the analyst's
knowledge of concepts and their interrelationships in his particular task domain.

Table 2-4. Description of the Date-Time Concept (DTG)

Day-number First two digits of seven
character string of format

NNNNNNZ. Constraints:

max day number = Month Length

Zulutime time concatenated with "2".

|

|

|

|

|

|

|

|

|

|

Time Four digit string with |
constraints: |
|

0000 < Time < 2400 |

|

Month Three character string. I
Member of set (Jan, Feb,Mar, [
Apr, May, Jun, Jul, Aug, Sept, |
Oct. Nov, Dec). |
|

|

|

|

|

Year Two digit string constraints:

n
~J

1st digit
2nd digit = 9

S o +

2.3.2.2 Structure of the Template: Procedural Components As mentioned previously,
templates are active data structures which incorporate both declarative and procedural
knowledge. This section is concerned with the procedural components of templates and
how these are used by the system throughout the process of narrative text analysis.

Procedures are attached to descriptor slots. They are essentially mapping rules which
effect the transformation of parsed sentences into event records. Procedures carry
out specific computations. Some define the steps involved in finding "fillers" for partic-
ular descriptors, others specity the operations involved in identifying the referents of

1-16

anaphoric expressions, while yet others may compute relations between events.

These mapping rules are necessarily language specific. They incorporate the domain-
specific pragmatic knowledge which establishes the link between the abstract descrip-

tion of an event class (the template) and the description of an individual member of that
class (the event record).

The process of "understanding" a sentence consists of an interaction between the pro-
cedures assoclated with the descriptor slots of the corresponding template, each of
which actively seeks to satisfy its own requirements. Essentially this is done by
searching the parse tree for constituents which satisfy the syntactic and semantic con-
straints on the permissible fillers for a particular descriptor.

It should be noted here that not all descriptor slots in a template need be filled for any
particular input sentence. A template provides slots as placeholders for information that
Is considered relevant, even though it may not always be present in the input. The
number of slots of any template that will be filled, therefore, depends largely on the
information contained in the input sentence. It is important to note, however, that, for a
sentence to be considered as "understood", the following two conditions must be met:

e Every element of the input sentence must be assigned to some descriptor slot;

@ All "obligatory" descriptor slots must be filled.

1-17

3.0 The Event Representation Language
3.1 Introduction

The Event Representation Language (ERL) developed under this contract is an experi-
mental language especially written to explore the use of "templates" as a knowledge
representation technique with which to build systems for message text analysis in sup-
port of 1&W functions. The basic data objects of ERL are the templates.

ERL Is Implemented in a subset of Prolog, an interactive programming language based
upon a simple but efficient proof procedure involving a subset of classical logic referred
to as "Definite Clauses" (van Emden, 1975). The basic computational mechanism of Pro-
log, and therefore of ERL, is a pattern matching process (‘unification’) operating on gen-
aral record structures ('terms’ of logic).#

Prolog was Initially developed at the University of Marseilles (Roussel 1875) as a practi-
cal tool for ’logic programming’ (Kowalski 1974; Colmerauer 1975; van Emden 1876), and
has since been used in several other centers (Stanford, Edinborough) for writing
language analysis systems (Dahl 1977; Warren 1977a, Warren 1977b).

Prolog is a perspicuous and powerful language for the expression of the concepts of our
Event Representation Language, and admits of an effective and reasonably efficient
Implementation. Clear, readable, concise programs can be written quickly and with few
errors. Specifically, the following features make it particularly suitable for our purposes:

e Pattern matching (unification) replaces the conventional use of selector and con-
structor functions for operating on structured data.

e The arguments of a procedure can serve, not only for it to receive one or more
values as input, but also for it to teturn one or more values as output. Procedures
can thus be "multi-output" as well as "multi-input".

® The input and output arguments of a procedure do not have to be distinguished in
advance, but may vary from one call to another. Procedures can thus be "multi-
purpose".

e Procedures may generate (via backtracking, in the case of Prolog) a set of alter-
native results. Such procedures are called "non-determinate". Backtracking
amounts to a high-level form of iteration.

e Procedures may return “incomplete" results, i.e., the term or terms returned as the
result of a procedure may contain variables, which are only filled in later, by calls
to other procedures. The effect is similar to the use of assignment in a conven-
tional language to fill in fields of a data structure. Note, however, that there may
be many occurrences of an instantiated variable, and that all of these get filled in
simultaneously (in a single step) when the variable is finally instantiated. Note
also that when two variables are unified together, they become identified as one.
The effect is as though an invisible pointer, or reference, linked one variable to
the other. We refer to these related phenomena as the "logical variable".

e "Program" and "data" are identical in form. A procedure consisting solely of unit
clauses is closer to en array, or table of data, in a conventional language.
» For a full description of the syntax and semantics of Prolog, see
Appendix B.

1-18

Section 3.2 shows how Prolog is used for encoding templates and their associated pro-
cedures. Sectlon 3.3 explains the ERL procedures so far developed for event record
synthesis, while section 3.4 offers a detailed example of how templates written in ERL,
and executed as a Prolog program behave as a semantic interpreter for the syntactic
structures output by the ATN parser.

3.2 How Templates are Expressed in Prolog

In the following paragraphs we describe the formalism used for the abstract specifica-
tion of both the data structures (templates) and the procedures of ERL, and show how
they are expressed in the programming language Prolog.

In ERL, both templates and template slots are encoded as Prolog procedures. A Prolog
procedure consists of a sequence of statements called clauses. A clause comprises a
head and a body. The head corresponds to a procedure call, while the body represents
conditions to be fulfilled for the head to be satisfied. The general format of a Prolog
clause is as follows:

e head:- body.

The head consists of one Prolog goal, while the body may consist of a sequence of one
or more such goals. Goals correspond to Prolog terms, which have the general form:

e functor(arg1, arg2,....argn)

Templates are encoded as 'construct’ clauses. For example, the DEPLOY template, which
Is informally represented in Table 3-1 in a simplified form, is encoded as in Table 3-2.

Table 3-1. Informal Description of the DEPLQOY Concept

Procedural Elements

| i |
| | |
] Il |
| | fOBL/1| Procedures I
| | A for |
|Descriptor | Filler Specification {/0OPT|{filling slots |
1 | { | 1
Object	Logical Subject	{OBL		Construct ‘'aircraft'
	noun phrase]		template from logical	
	(+acft)		{ subject	
l		Il		
]		1 1		
Destination] PP:'to'+ NP (+loc) {OBL	iSearch VMODS list			
			1for appropriate {	
			Iprepositional phrase	
		I 1		
{	{{Search VMODS 1list			
Time	1. Adv(+ time + ref)	OPT		for appropriate
	2. PP (during, between)	{lconstituent		
] | + NP (+ time) | 11 |
o e e e e e e e e e - +

) - I———]

B s eant

Table 3-2. ERL Representation of DEPLOY Template

B e e e e e +
| construct ('DEPLOY', s(Subj,Vbgr,Obj,Compl, Vmods), (OB1, S1, L2, DTG]): - |
| objectl (Subj,0Bl), |
| destinationl(Vmods, D1), |
] construct ('DTG', Vmods, DTG) . |
] |

The head of the "“construct" clause has three arguments: a template name, the name of
the syntactic constituent which serves as the context which is searched in an attempt
to find fillers for the descriptor slots of the template in question, and a third argument
which represents the output of the procedure, i.e., the instantiated slots.

The body of the 'construct’ clause consists of three 'goals’' corresponding to the three
slots of the DEPLOY template shown in Figure 3-2. These three goals are themselves
defined as procedures, which seek fillers for the descriptor slots they represent.

Procedures for filling template slots can be obligatory or optional, and are named after
the slot they are designed to fill. Thus, the procedure for filling a 'destination' slot is
called ’'destination1’, if it obligatory, and 'destination2’, if it optional. Slot-filling pro-

cedures take as input a syntactic structure and return a "filler", provided certain condi-
tions exprassed as goals are satisfied.

For example, the 'destination1’ slot in the 'construct’ procedure for DEPLOY, is written as
In Table 3-3.

Table 3-3. A 'destination’ Clause

destination (Vmods, slot ("DESTINATION=', Slot)):-
fill-slot (Vmods, [{*'TO'], 'LOC', Slot).

— i

The 'destination’ clause takes the Vmods list as input, and returns a filler which must be
a prepositional phrase with a preposition 'to’, and an object nounphrase with the feature
'LOC’. Notice that the third goal of the construct procedure for 'DEPLOY' is a call to the

‘construct’ procedure for building a DTG record. For a full listing of the procedures for
constructing templates, see Subsection 3.3.

It would appear that the procedures required for filling descriptor slots will cover a wide
spectrum, from those involving a straight forward match of two structures, to those
requiring complex operations such as data base searches. A preliminary specification of
procedures developed for the analysis of the air activities sublanguage is given in the

next subsection.
3.3 ERL Procedures for Event Record Synthesis

In this section we present the set of 'air activities’ event templates and their associ-
ated procedures as expressed in ERL, the formalism from which they will be compiled.

1-20

. TR W

Aot

The templates developed so far for the air activities domain cover four types of entities:
events, objects, relations, and concepts related to time and date (the DTG concept).

Templates have been developed for the following event classes: ’active’, ’'arrive’,
'depart’, 'deploy’, 'enroute’, ’flight’, ’locate’, 'penetrate’, 'recover’, and 'return’. The only
physical object currently associated with a template is the ’aircraft’. How relations are
encoded in Prolog is illustrated by the 'precede’ template. A special template has been
developed for the date time group concept (DTG).

In addition to the procedures for expressing templates, there are a number of other pro-
cedures which serve the purpose of initiating the event synthesis process, by identify-
Ing the template required for the interpretation of a particular input string. This is the
function of the ’build__ER’ procedure described below.

3.3.1 The 'build«ER' Procedure A ’'build_ER’ clause takes as input a parse tree (or a
substructure thereof), finds the name of the template to be activated, invokes the
corresponding 'construct’ clause, and returns an event record (ER). The ’build_ER’ pro-
cedure has three entry points corresponding to the three cases listed beiow.

3.3.1.1 Input is a Sentence:-

build__ER (s(Subj,Vbgr,0bj,Compl,Vmods),temp(Name,ER)):-
find__t__name(Vbgr,Name),
construct(Name,s(Subj,Vbgr,0bj,Compl,Vmods),ER).

3.3.1.2 Input is a Nominalized Sentence:-

build_ER(np(Det,L1,N(W,_),L2),ER):-
feat(W,’NOMZ’),
change(np(Det,L1,N(W,_),L2),T1),
build__ER(T1,ER).

3.3.1.3 Input is a Nounphrase:-

build__ER(np(Det,L1,Noun,L2),ER):-
find__t_name(Noun,Name),
construct(Name,np(Det,1,Noun, 2),ER).

’bulld__ER’ clauses have two or more subgoals. The task of the 7find_t_name' pro-
cedure Is to identify the name of the template required for the interpretation of the
input, while the purpose of the 'construct’ procedure is to fill in the slots of the template
thus identified, i.e., to construct an event record (ER). This event record is the content
representation of the input. The ’feat’ clause is a built-in procedure, also referred to in
Prolog as an 'evaluable predicate’. 'feat’ checks a lexical entry for a given feature. For
example, in 3.2.1 above, it checks the headnoun of the nounphrase np for the feature
’NOMZ’. Finally, ’change’ is a normalization procedure which restores sentential structure
to nominalizations.

3.3.2 The ’‘construct’ Procedure A ’construct’ clause, when activated, generates a set
of subgoals which seek suitable 'fillers’ for the slots of the template it embodies. The
output is a list of instantiated slots which reflect the meaning content of the input. Il
this sense, 'construct’ clauses may be regarded as procedural definitions of templates.
"Construct’ clauses currently handle four kinds of entities: events (e.g., deploy), physical
objects (e.g., aircraft), relations (e.g., precede), and abstract concepts such as those

1-21

i ormeliton A, bt st

that pertain to date and time indications.
3.3.2.1 Construct Clauses Embodying Event Templates
3.8.2.1.1 ‘active’

construct('ACTIVE',s(Subj,Vbgr,0bj,Comp!,Vmods),
[OB1,MI,L1,ALT,ST2,DTG]):-

object1(Subj, OB1),
mission(s(_,__,Obj,Compl,Vmods),Ml),
location1 (s(_,__,Obj, ,Vmods), L1),
altitude(IT, ALT),
status2 (IT, ST2),
construct('DTG’,Vmods,DTG).

3.3.2.1.2 ‘arrive’

! construct("ARRIVE',s(Subj,Vbgr,Cbj,Compl,Vmods), [0B1,D2,DTG]):-
object1 (Subj, OB1),

destination2 (Vmods,D2),

construct('DTG’,Vmods,DTG).

3.3.2.1.3 ‘depart’

construct('DEPART',s(Subj,ngr,Obj.Compl,Vmods),[OB1 $1,L2,DTG]):-
object1 (Subj, OB1),
sourcel (Vmods, S1),
location2 (s(_,_,0bj, ,Vmods), L2),
construct("DTG' Vmods,DTG).

3.3.2.1.4 'deploy’

construct("'DEPLOY’,s(Subj,Vbgr,0bj,Compl,Vmods), [0B1,D1,DTG]):-
object1 (Subj, OB1),
destination1 (Vmods,D1),
construct('DTG',Vmods,DTQ).

3.3.2.1.5 'enroute’ ! ’

construct("ENROUTE’,s(Subj,Vbgr,Ob j,Compl,Vmods),[0B1,MI,D1,DTG]):- l .
object1 (Subj, OB1), |
mission(s(_,__,Obj,Compl,Vmods),MI), ;
destination1 (Vmods,D1), i

construct('DTG’,Vmods,DTG). '1

|

3.3.2.1.6 ‘flight'

construct('FLIGHT',s(Sub},Vbgr,Ob|,Compl,Vmods),
[0B1,M1,12,52,02,E2,DIR,ALT,PA,THM,DTG]): -
object1 (Subj, OB1),
mission(s(__, ,0vj,Compl,Vmods), MI),
location2 (s(_, ,Obj, ,Vmods),l2),
source? (Vmods,S2),
destination2 (Vmods,D2),
aextent2 (1T, E2),
direction(Vmods, DIR),
altitude(I7, ALT),
path(Vmods, PA),
them(Vmods, THM),
construct('DTG' Vmods,DTG).

3.3.2.1.7 'locate’

construct(’'LOCATE",s(Subj,Vbgr,Obj,Compl,Vmods),|AG2,081,L 1,DTG]):-
agent2 (1T, AG2),
object1 (Subj, 0B1)
location1 (s(__, ,Obj, ,Vmods), L1),
construct('DTG' Vmods,DTG).

3.3.2.1.8 'penelrate’

construct ("PENETRATE',s(Subj,Vbgr,Obj,Compl,Vmods),[OB1,L1,ALT,DI G)):-
object! (Subj, OB1),
location1 (s(_, ,Obj, ,Vmods), L1),
altitude(IT, ALT),
construct('DTG',Vmods,DTG).

3.3.2.1.9 The'precede’

construct('PRECEDE’, s(Subj, _Obj, .,)[ErE2]):-
build__ ER(Subj,£ 1),
build_ ER(Obj, E2).

3.3.2.1.10 ‘recover’

construct('RECOVER', s(Subj.ngr.0b].C0mpI.Vm0ds).[OB1 L LT DTG):-
objectt (Subj, OB1),
location1(s(_, ,Obj, Vmods)L1),
construct('DTG',Vmods,DTG).

3.3.2.1.11 'return’

construct('RETURN' s(Subj,Vbgr,Obj,Compl,Vmods),
[OB1,01,M1,L2,82,DTG]):-

object! (Subj, OB1),
destination1 (Vmods,D1),
mission(s(__, ,Obj,Compl,Vmods), Ml),
tocation? (s(_,_,Obj,_ Vmods), L2),

“source? (Vmods, S2),
construct('DTG . Vmods,D1G).

3.3.2.2 Construct Clauses for Templates Representing Physical Objects

3.3.2.2.1 ‘aircraft’ Note that 'aircraft’ is the only template representing a physical
object in the system at present.

construct('AIRCRAF T np(Det,L1 ,Head,L2),[EQ,NA,SUB,SB,SE 1]):-
equipment(L1 Head,EQ),
nationality(L1,'nation’,NA),
subordination(L 2,SUB),
stagingbase(1 2,SB),
setspec(Det,SET).

3.3.2.3 Construct Clauses Relating to Date and Time Concepts

construct('DTG" Vmods,[T1,DT)):-
time(Vmods, T1),
date(Vmods,D1).

3.3.3 Procedures for Filling in Template Slots The predicates used for filling template
slots are represented by slot names. A slot name followed by '1' means that filling it is
obligatory; a slot name followed by '2' means that filling it is optional.

3.3.3.1 ‘altitude’

altitude(s(_, _,_,_,Vmods),slot{’ALT=", Siot)):-
fil_slot(Vmods, ['at’], 'ALT", Siot).

altitude(__,nil).

3.3.3.2 ‘date’

date(Vmods,slot("DATE="l W,Day,Month,Year)):-
member(pp(lL ,W,date(Day,Month,Year)),Vmods).
| date(_, nil).

J3.3.3.3 ‘destination’
destination 1 (Vmods, slot('DESTINATION=',Slot)): -
fill__ slot(Vmods,['TO'],'"LOC’,Slot).

destination? (X,Y):- destination1(X,Y).

destination? (_,nil).
3.3.3.4 'direction’ i

direction(Vmads,stot('OIRECTION=" Stot)):-
fill_slot(Vmods, 'DIR’, Slot). /|

direction(__,nil).
3.3.3.5 'equipment'

\, equipment(tist,nnode(W, _). slotCEQUIPMENT=",[List,W])):- feat(W,'ACRAFT").
3.3.3.6 'location’

location1(Input,slot("LOCATION=",X)):- locat1(Input,X).
location2(Input,slot("L OCATION=",X)):- locat2(Input,X).
locat1(input,cons(X,List)):- loc(Input,X), locat2(input,List).
locat2(input,cons(X,List)):- loc(Input,X), locat2(Input,List).
locat2{__,nil).
loc(s(__,_, , ,Vmods), Slot):-

flll_slot(Vmods,['ALONG','AT'.'EAST OF','lN','OVER'],'LOC',Slot).
loc(s(_, _,NP,_,)NP):~- test_nhead(NP,'LOC").

3.3.3.7 ‘mission’

mission(s(_,_, , ,Vmods),slot("MISSION=", Slot)):-

fill__slot(Vmods, ['AFTER’, 'FROM','IN','ON'], 'ACTY", Siot).
mission(s(_,_,NP,_,),slot(’MISSION="NP)):- test_nhead(NP,'NOMZ").
mission(__,nil).

3.3.3.8 ‘nationality’

nationality(List, Feature,slot("NATIONALITY=', W)):- member(nnode(W,_) List),
feat(W.Feature).

nationality(List, Feature,slot("NATIONALITY="W)):- member(W, List),
feat(W,Feature).

nationality(__, nil).

3.3.3.9 ‘object’

object1 (NP,slot('OBJECT=', Slot)):- test__nhead(NP,'’ACRAFT"),
construct("AIRCRAFT’,NP, Siot).

3.3.3.10 ’path’

path(Vmods,slot("PATH=', Siot)):- fill__slot(Vmods,['VIA'],'LOC’,Slot).
path(__,nil).

3.3.3.11 'setspec’

setspec(dp(_, _ ,Num),slot("NUMBER=",Num).
setspec(__, nil).

3.3.3.12 'source’

source1(Vmods,slot('SOURCE=", Slot):~ till__slot(Vmods,['FROM'),"LOC",Siot).
source2(X,Y):~ source1(X,Y).
source2 (__,nil).

3.3.3.13 'stagingbase’

stagingbase(List,slot("STAGINGBASE =", Slot):- fill_slot(List,['AT"}, t
'LOC",Slot). i

stagingbase(__,nil).
3.3.3.14 'subordination’

subordination(List,slot(SUBORDINATION="),Slot)):-
fill_stot(List,['FROM'],'SUBNUM', Slot)
subordination(__,nil).

3.3.3.15 ‘them' (the threat)

them(Vmods,slot('THEM=", Slot):-
fill_slot(Vmods, ['AGAINST'], 'NATION', Stot).
them(__,nil).

3.3.3.16 ‘time’

time(Vmods,slot('TIME=’, Slot):-
find__time(Vmods,['AT',"BETWEEN’,"BY’,'DURING’,'SINCE’],’TYME’,
Slot).
time(Vmods,slot('TIME=",Slot): -
find__ time(Vmods.['AT','BETWEEN',’BY','DURING','SINCE'].'4DIG',
Slot).
time(Vmods,slot('TIME=" Siot): -
ﬁll_‘slot(Vmods,['AT'.'BETWEF_N','BY','DURING','SINCE’].'TYME',
Slot).
time(Vmods,slot('TIME=", Slot):-
fill__slot(Vmods, 'TYME' Slot).

time(__,nil).

3.3.4 Other Procedures
3.3.4.1 ‘tilleslot’

fill__slot(List, Preplist, Feature,[L1,Prep,NP]):-
member (pp(L1,Prep,NP),List),
member(Prepa, Preplist),lexeq(Prep,Prepa),
test__nhead(NP, Feature).

Given the Vmods list, a list of prepositions Preplist, and a lexical feature Feature,
"fill_slot’ searches the Vmods list for a prepositional phrase (pp), such that Prep is a
member of Preplist and the headnoun of NP has the feature Feature. 'fill_slot' returns
the prepositional phrase 'pp’.

fill__slot(List, Feature W):-
member(Wa, List),lexeq(W,Wa),
feat(W,'ADVB"),
feat(Ww, Feature).

Given the Vmeds list and a lexical feature Feature, fill__slot' searches the Vmods list for
an adverb with feature Feature,and returns the adverb.

fill_slot(NP, Feature NP):- test_ nhead(NP,'LOC").
3.3.4.2 'find«feat’

find__feat(W,L,Y):-
member(Y,l),
feat(w,Y).

'find_. feat' takes as arguments the dictionary entry of a word W, a list of atoms naming
templates available in the system (L), and returns a value for the variable Y, such that Y
Is a member of L, and Y is a feature of W. '

1-26

3.3.4.3 ‘find«tename’ 'Find__t_name' is a procedure for finding the name of the tem-
plate to be activated for the interpretation of a particular input structure. 'find_ t _name'
has two entry points according to whether the template name sought is derivable from a
verbgroup or from a noun .

3.3.4.3.1 The template name is derivable from a verbgroup:-

find_t__name(vg(_, , ,W)Name):-
find__feat(W,['ARRIVE’,DEPART',DEPLOY’,'"ENROUTE", FLI GHT',
'LOCATE’,'PENETRATE’,’PRECEDE’, RECOVER’,
'RETURN'],Name).

3.3.4.3.2 The template name is derivable from a noun:-

find__t_ name(nnode(W,_),Name):-
find__ feat(W,['AIRCRAFT'],Name).

3.3.4.4 ‘find«time’

find__time(List, Preplist, Feature,[L1,W,L2]):- :
member(pp(L1,W,L2),List),
member(Wa,Preplist), lexeq(W,Wa),
member(X,L2),
feat(X,Feature).

3.3.4.5 ‘testenhead’
test__nhead(np(_,_,nnode(W,_),),Feature):- feat(W,Feature).

'test_nhead’ determines whether the head noun (W) of the input np the feature
Feature.

3.3.4.6 Listdefinition

list([]).
list(X,L):- list(L).

3.3.4.7 Llistmembership

member(X,[X,.._]).
member(X,[_,..L]):- member(X,L).

3.3.5 Syntactic Normalization Rules.

3.3.5.1 Nominalizations. The rules listed below apply to nominalizations in subject posi-
tion and/or nominalizations in object position.

3.3.56.1.1 Restructuring 'Passive’ Nounphrases.

Example: A WEATHER RECONNAISSANCE FLIGHT BY ONE
PRETORIA BASED SP-2656 B-80 (BEACON)
TO THE CAPE VERDE ISLANDS.

change(np(Det,[L1,X], nnode(W,0),[X1,pp(_,by,Y),X2]),
s(Y,vg(_,_,_ W)np(Det,L1,nnode(X,0),[], .[X1,X2]):~
test_ nhead(Y,'NOMZ’).

W

3.3.5.1.2 Restructuring 'Active’ Nounphrases
Example1: UAF B-75 DEPLOYMENTS TO MAURITIUS

change(np(Det,[L1,X],nnode(W,0),L2),
s(np(Det,L1,nnode(X,0),[D.va(_, , ,W),0,0,L2)).

Example?2: DEPLOYMENT OF 12 AIRCRAFT TO KIGALI

change(np(Det1,L1, nnode(W1,pp(__,of np(Det2, L2,nnode({W2,0),[D)), L3),
s(np(0,[L2],nnode(W2,0),[]),va(__,_,_,W1),0,0,L3)):~
feat(W2 acraft').

3.4 Event Record Synthesis, an Example

Before presenting an example of how templates are executed by ERL, a word should be
said about the control mechanism employed by the system.

3.4.1 The ERL Control Mechanism. Prolog provides a remarkably simpie form of control,
which suffices for many practical applications.

The declarative semantics of Prolog clauses is such that the ordsr of the goals in a
clause and the order of the clauses themselves are both irrelevant to the declarative
interpretation. However, these orderings are generally significant in Prolog, as they con-
stitute the main control information.

When the Prolog system is executing a procedure call, the clause ordering determines
the order in which the different entry points of the procedure are tried. The goal order-
ing fixes the order in which the procedure calls in a clause are executed. The ’produc-
tive' effect of a Prolog computation arises from the process of 'matching’ a procedure
call against a procedure entry point,

3.4.2 Step by Step Description of the Synthesis Process. In this section we describe by
means of an example how ERL template representations drive event record synthesis.
Consider the following example:

(1) THIS AIRCRAFT ROUTINELY PRECEDES UAF B-75 DEPLOYMENTS TO MAURITIUS.

As pointed out previously, one of the basic principles underlying our approach to the
cantent analysis of narrative text is that the structural descriptions at all levels of
analysis should be homogeneous. Sentence (1) above was chosen precisely because it
allows us to show how the same formalism lends itself naturally to the description of
structures and processes at several levels of grammatical description thus providing &
homogeneous approach to the interpretation of the syntactic structures output by the
ATN. Specifically, the levels of grammatical description involved in the analysis of (1)
are;-

® syntactic normaiization;
e the description of objects (aircraft);
® the description of an atomic event ('deployments");

® the description of a text-level refation (‘precede’).

Sentence (1) states that certain deployments are routinely preceded by a certain flight.
Notice that syntactically, (1) is a simple sentence of the form Subject, Verb, Object.
Conceptually, however, it is a complex structure in which the main verb 'precede’

1-28

functions as a text-level relation locating two events on the time line. The two events
are linguistically encoded as the subject and the object of the verb 'precede’. Note that
the subject is 'this aircraft’ which, although syntactically a simple noun phrase describ-
Ing an object, is understood as 'the flight of this aircraft’, i.e., it is understaod as the
description of an event. This is information which does not reside in the actual text, and
which will eventually be supplied by an inferential component utilizing extralinguistic
knowledge stored in the system. The current version of ERL lacks the necessary
inferential mechanisms which would supply this information. 'This aircraft’, therefore, is
interpreted as the description of an object. As mentioned above, 'precede’ relates two
events on the time axis. 'Precede’, then, is a relation which has two arguments: a
‘predecessor’ and a 'successor’. As indicated above, the first argument of 'precede’ -~
the ’predecessor’-- will be an aircraft description. The second argument of 'precede’--
the ’successor’ -- will be the interpretation of the syntactic object of the sentence.
ERL utilizes a normalization rule to transform the latter into a sentential structure which
Is then further interpreted by rules of semantic interpretation, and transformed into an
event record of type 'deploy’.

A diagrammatic representation of the final output of the event record synthesizer}is
given in Figure 1, which is read as follows:~

The record is of type 'precede’. The 'predecessor’ describes an object of type 'aircraft’,
while the 'successor’ describes an event of type 'deploy’. The objects being deployed
are UAF B-75s, and the destination of these aircraft is Mauritius.

| | . ol
{Destination: TO MAURITIUS |

| Precede ki 1
| Modifier: ROUTINELY |Aircraft | {
| Predecessor: -------- > |Equipment: THIS AIRCRAFT | |
| | | l
I |
I e ~ - Lkt
| |Deploy s 1%
| jObject: —->]Aircraft e
| | | Equipment: B-75 | | |
| Successor: ---————-—-- > |Service: UAF I
| | i
| |
I 1
| |
| |

!

Figure 1. Content Representation of "THIS AIRCRAFT ROUTINELY
PRECEDES UAF B~75 DEPLOYMENTS TO MAURITIUS".

3.4.2.1 The Initiation of the Synthesis Process. In this section we give a detailed step
by step description of the event record synthesis process as executed by MATRES [l
As explained in a previous section, the EBL semantic interpretation rules (clauses) are
used top-dowrn, one at a time. Goals in a clause are executed from left to right. I there
are alternative clauses at any point, backtracking will return to them. To see how parse

1-29

sl

trees are interpreted by ERL, consider (2), which is the parse tree of sentence (1):-

(2) s(np(dp(0, THIS,0),[], nnode(AIRCRAFT,0),[]),
va([ROUTINELY],[].0,PRECEDES),
np(0,| nnode(UAF,0),nnode(B-76,0)],
nnode(DEPLOYMENTS,0),
[pp([1.TO,np(0,[].anode(MAURITIUS,0),L 1) .
ol D.

For simplicity of exposition we will henceforth refer to structure (2) as 'Tree_in".

The synthesis process involves the execution of the system-generated goal (3):

(3) :- build_ER ('Tree _in' ER).
'‘build_ ER' clauses have two arguments: the input structure '"Tree_ in', which in our case
is the structure given in (2), and an output structure ER, which is the content represen-
tation of 'Tree__in". . : :

3.4.2.2 Activation of Template. Since 'Tree_in' in our example Is a sentential structure,
goal (3) unifies with the head of the first cliause of the 'build_ ER' procedure (4):

(4) build_ER (s(Subj,Vbgr,0bj,Compl,Vmods),ER):~
find__t _name(Vbgr,Name),
construct(Name, Tree_in' ER).

This results in the following instantiations:

(6) Subj = np(dp(0,THIS,0),[J,nnode(AIRCRAFT,0),[]):
Vbgr = vg({ROUTINELY],|].O.PRECEDE S);
Obj = np(0,[nnode(UAF ,0),nnode(B-75,0)],
nnode(DEPLOYMENTS,0),
[pp(]],70,np(0,[].nnodu(MAURITlUS,O).[]))]);
Compl = O;)
Vmods = [].
The body of the matching clause instance (4) also gives rise to the two new subgoals
(6) and (7):
(8) find_t name(va([ROUTINELY][].0,PRECEDES),Name).

(7) construct(Name,
s(np(dp(0.THIS,0).[,nnode(AIRCRAFT,0).{ 1),
va([ROUTINELY] [.O.PRECEDES),
np(0,] nnode(UAT 0).nnode(B-75,0)].
nnode(DEPLOYMENTS,0),
[pp([1.TO.np(0 [f.nnode(MAURTT ws,oMmh.

o[D.ER).
The first task is to identify the template required for the interpretation of (2). This is
achieved by executing goal (6) listed above.
Goal (6) matches the head of the first clause of the 'find_ t _name' procedure (see 8). 1t
produces the instantiations in (9), and yields the new goal (10):-

(8) find_t_name(vg(__, , _,W),Y):-
find__feat(W,L,Y).

(9) W-=’precedes' ; Y = Name

(10) find__feat ('precedes’, [list of event template names], Name).
Goal (10) in turn unifies with the head of the 'find_ feat’' clause (11)

(11) find_feat (W,L,Y):~
mem (Y,L),
feat (W,Y).

This creates the following instantiation (12):-

(12) find__feat ('precedes’, [list of event template names], Name):-
mem(Name,[list of event template names]),
feat(’precedes’, Name).

The execution of the subgoals of (12) result in the instantiations (13):-

(13.1) Name = 'Precede’, and
(13.2) construct(’precede’, Tree-in’, ER).
where (13.2) is still only a partial instantiation of (7).

Goal (6) is now fully instantiated, i.e., the name of the template sought was found to be
‘precede’.The system now proceedes to execute second goal set up by executing (3),
namely goal (7), now instantiated to (13.2). Executing this goal results in the instantia-
tion of the two arguments of 'precede’, namely, E7 and E2.

3.4.2.3 Instantiating the Arguments of ‘PRECEDE' The reader is reminded that the verb
‘precede’ is a two-place predicate whose interpretation in the environment of a subject
E1 and an object E2 is ’before(E1,E2)’. The 'construct’ procedure for 'precede’ seeks to
find fillers for the two arguments E1 and E2. To achieve this result, goal (13.2) unifies
with the head of the ’contsruct’ clause for 'precede’ (14), and sets up the two subgoals
(14.1) and (14.2):-

(14) construct ('precede’, s(Subj,__,0bj, _,), [E1,E2]):-
(14.1) build__ER(Subj,E1),
(14.2) build__ER(Obj, E2).

where, according to (5),

Subj=np (dp(0,THIS,0),[],nnode(AIRCRAFT,0),[1);

Obj=np(0,[nnode(UAF,0),nnode(B-75,0)],
nnode(DEPLOYMENTS,0),
[pp([1,70,np(0,[],nnode(MAURITIUS,0),[D).

The next step is to execute goals (14.1) and (14.2).

3.4.2.4 Interpreting the Syntactic Subject. The partially instantiated goai (14.1) is
shown in (15):-

(15) build_ER(np(dp(0,THIS,0),]],nnode(AIRCRAFT),0),[1),ER).

Since the first argument of (15) is a nounphrase, it will unify with the head of the
second ’'build__ER’ clause (16):-

(16) build__ ER(np(Det,L1 N(W,)L12)ER):-
feat(W,'NOMZ"),
change(np(Det,L 1, N(W,) 12),T1),
build__ ER(T1,ER).

However, the first goal of clause (16) requires that the headnoun have the feature
'NOMZ'. This is not the case in our example, so that the first goal fails. The system now
backtracks, i.e., it rejects the most recently activated clause (16) undoing any substitu-
tions made by the match with the head of the clause. Next, it reconsiders the original
goal (15) which activated the rejected clause, and tries to find a subsequent clause
which also matches the goal. As a result, goal (15) now unifies with the head of the
third 'build__ER’ clause (17):-

(17) build_ER(np(Det,L1,Noun,2),ER):-

(17.1) find_t_name(Noun,Name),

(17.2) construct(Name,np(Det,L1,Noun,L2),ER).

This results in the following instantiations:-

(18) Det = dp(0,THIS,0);
L1 =[}
Noun = nnode(AIRCRAFT,0);
L2 =[}
E1=ER.

The first goal of (17) unifies with (19):-

(19) find__t_name(nnode(W,0),Y):-
find__ feat(w,['aircraft’, 'DTG’, etc], Y).

The procedure here is similar to that described earlier. As a result of the unification pro-
cess, and of executing (19), we have the following instantiation:-

W = 'AIRCRAFT’

Y = Name = 'aircraft'.

Clause (17.1) is now fully Instantiated -- the template sought has been found to be the
'aircraft’ template. The system proceedes to the execution of goal (17.2).

Goal (17.2) is now partially instantiated to (20):-

(20) construct(Taircraft’, np(0,THIS,0),[],
nnode(AIRCRAFT,0),[1),ER).

Goal (20) activates the 'construct’ procedure for ‘aircraft’, which fills the 'equipment’

slot with "this aircraft’, and leaves all other slots empty. The result of executing (20)
is:=

aircraft

El = equipment= THIS AIRCRAFT

+ ———
B s e b

IR ————

3.4.2.5 Interpreting the Syntactic Object. Rather than describing the process of syn-
thesizing a record for 'this aircraft’ in detail, we will return to the second goal of the
'construct’ clause for 'precede’, namely, to (14.2), which is now partly instantiated to
(21):-
(21) build__ER(np(0,[nnode(UAF,0), nnode(B-75,0)],
nnode(DEPLOYMENTS,0),

[pp([],TO,np(0,[},nnode(MAURITIUS,0),[D)].ER).

The first argument of this clause is the nominalized sentence 'UAF B-75 DEPLOYMENTS
TO MAURITIUS .Accordingly, clause (21) will unify with the head of the second 'build_ER'
clause, namely (16), reproduced here as (22) in its partly instantiated form, complete
with its subgoals (22.1), (22.2), and (22.3):-

(22) build__ER(np(0,[nnode(UAF,0),nnode(B-75,0)],
nnode(DEPLOYMENTS,0),

[pp([],TO,np(0,[].nnode(MAURITIUS,0),[)]),ER):-
(22.1) feat(DEPLOYMENTS, 'NOMZ'),

(22.2) change(np(0,[nnode(UAF,0),nnode(B-75,0)],
nnode(DEPLOYMENTS,0),
[pp([},70,np(0,[],nnode(MAURITIUS,0),[])]).T1),
(22.3) build__ER(T1,ER).

Goal (22.1) succeeds, and the system activates the 'change’ procedure

. Goal (22.2)
unifies with (23) below, which restructures the input nounphrase into a sentential
structure:-

(28) change(np(Det,[L1,X],nnode(W,0),L2),
s(np(Det,L1,nnode(X,0),[],),vg(__,_,0,W),0,0,L2)).
Upon unification with (22.2), (23) becomes Iinstantiated to (24):
(24) change(np(0,[nnode(UAF,0),nnode(B-75,0)],
nnode(DEPLOYMENTS,O),
[pP([1,TO,np(0,[],nnode(MAURITIUS,0),[)],

s(np(0,[nnode(VAF,0)],
nnode(B-75,0),[]),
vg([1.[],0,DEPLOYMENTS),

’

0,
[Pp([1,TO,np(0,[1,nnode(MAURITIUS,0),[1)])).

T1 is instantiated to the second argument of (24). The system now proceedes to exe-
cute goal (22.3) reproduced here In its instantiated form (25):-
(25) build__ER(s(np(0,[nnode(VUAF,0)],
nnode(B-76,0),[],
vg([1.{1,0,DEPLOYMENTS),
0,0,
[pp([1,TO,np(0,[],nnode(MAURITIUS,0),[))]),ER).

Execution of the 'built_ER' goal (25) eventually results in the activation of the ‘con-
struct’ clause for ‘deploy’ (26):-

1-33

e ———— el

S ———

(26) construct(’deploy’ ,IT, [01,D01,T2]):-
object1 (IT, O1),
destination1 (17, D1),
time2 (IT, 72).

with 'IT" instantiated to the first argument of (26). The goal 'object1’ activates the
'object1’ procedure (28):-

(28) object1 (s(Subj,_, ,_,), Slot):-
test__nhead(Subj, 'acraft’),
construct 'aircraft’, Subj, Slot).

The result is the instantiation:-
Subj = np(0,[nnode(UAF,0)],nnode(B-75,0),[]).
and 'Slot’ gets linked to 'O1°'.

The goal 'test__nhead' determines whether the headnoun(W) of a noun phrase 'np’ has

the feature Feature. It unifies with the clause for 'test_nhead’ (30), and results in the
Instantiations (31):-

(30) test__nhead (np (_,_,nnode(W,_)),Feature
(31) W= 'B-75'; Feature = 'acraft’

Goal (30) succeeds, and the system begins executing the second goal of (28) namely
(33):-

(83) construct (‘aircraft’, Subj,ER).

The second goal of (26) activates the 'destination’ procedure (35) and returns D1 = 'To
Mauritius'

(35) destination (s(__,_, ,_,Vmods), Slot):-
fill_slot(Vmods, ['nil’, 'to’,....], 'loc’, Slot).

The third goal of (26) activates the 'time2’ procedure (37), which returns T2 = "nil’.

(37) time2 (s(__,_._,_,Vmods), Slot):-
fill_slot(Vmods, ['at’, 'between’, 'by’, 'during’],
'tyme’, Slot).

t'mez (s(__s_q_ .,‘Vmods). S'ot):-
fill__slot(Vmods, 'tyme’, Slot).

time2 (__,nil).

This completes the execution of goal (26). As a result, the second output element (E2)

of the 'construct’ procedure for 'precede' is Instantiated to an event record of type
'deploy’, i.e.,

PR

AT WP S 327 p TR

e
ot e a'it

|

|
| object= | aircraft ([
E2 = | | equipment= B-75 | |
t { service= UAF |
| [
| |
| |

3.4.2.6 Output of Event Record Synthesis Process. The complete diagrammatic
representation of the content of (1) is given in figure 1, which shows the relation
between E1, E2, and its subparts.

The text-level semantic interpretation rule S1 of the Matres Il System now interprets
the results as follows:-

§1. ['precede’, 'Tree_in’, [E1, E2]] => before(E1, E2)
meaning "The content of E1 happens before the content of E2".

This completes our account of the interpretation of sentence (1).

4.0 The MATRES Il System
4.1 Introduction

MATRES |l is the result of the second cycle In the development of a system with full
capabilities for deriving formatted records from the narrative text of intelligence mes-
sages. It represents a considerable advance on MATRES |, which provided only a rudi-
mentary capability for testing algorithms for narrative text analysis.

The primary subject domain of MATRES Il is that of air activities. While in a fully
developed system the unit of analysis would be the entire message, the scope of the
current system Is still limited to the analysis of single sentences.

The MATRES | parsar has undergone considerable refinement and expansion and
currently accepts a much wider range of syntactic constructions than was previously
achieved. The definition of the input language accepted by the system is embodied in a
transition network grammar model based upon Woods (1970, 1973). A detailed description
of the syntactic constructions accepted by the current system is given in subsection
4.3.

Since the transition network parsing methodology is by now quite well known, little will
be said about the parser itself. Part |l of this report, however, does include detailed
documentation of our particular implementation. In this section, we focus mainly upon the
parsing strategy adopted in MATRES I, including the augmented transition nets used by
the system. This is the subject of subsection 4.4.

In the current system English language words are entered into a linguistic dictionary,
while strings with fixed patterns are recognized at the input stage by a finite state
automaton (FSA) designed especially for this purpose.

The major feature of MATRES Il is its capability for semantic analysis. This is achieved
by means of the Event Representation lLanguage, which is a language specially
developed for mapping the syntactic structures produced by the parser into template~
derived content representations. As discussed in Section 3, the basic data structure of
the Event Representation Language is the template. Section 4.6 describes the template
Inventory so far developed for the aircraft domain, and presents the methodology for the
selaction of the descriptors to be included in templates of a particular subject domain.

The next section provides a brief functional description of MATRES II.
4.2 MATRES Il == Functional Description

An overview of the MATRES Il system organization and data flow is shown in Figure 4-1.
The main system components are: the Lexical Unit Recognizer, the ATN parser, and the
ERL "machine". The direction of the arrows in the Figure indicate the general flow of
information as a sentence is processed through the system. The main stages of event
record generation are shown across the center of the Figure. The analysis begins when
an input sentence is received by the Lexical Unit Recognizer, which uses a stored dic-
tionary and the FSA Recognizer to transform the individual words of an input sentence
into a string of lexical units. First, a dictionary look-up process replaces words and
phrases In the sentence with corresponding lexical entries. Strings which have no
entries in the dictionary are passed to the FSA Recognizer, which attempts to identify
them as one of several fixed-pattern categories. The output of this stage is a string of
lexical units containing syntactic and semantic information for use by the parser, and
later by the ERL interpretive routines.

P W

e e R R . e o Ll D L el il - T Al Vo e
o —

M3LAJBAQ WB3SAS 1] SIdLYW “1-p 4nbiy

LRI LSS
vs4

y
" 5 Lx3ay
wosnosd -] ..3...“.“ ém e e
43 \ ey 5034
Vo4

) {

~~
o
S0
1
N3AE u..:.o....._n: u3suva 2“....“.... MAZ NN 1x3L —_
am: NO IV AONAINGS
MALNAS NIV et LINO INOIXFT _aw

1 T

: x4l
4T1aW00 |« AVHHVED HODTXET
17 HLV MLV A3HOLS

HATI4ROD
HOOT XA

Next, the string is input to the parser, which analyzes it according to the sublanguage
grammar stored in the system, and produces a parse tree showing the constituent struc-
tures of the input string and their hierarchical relationships.

The parse tree in turn is input to the ERL "machine", which uses the pattern matching
process ("unification mechanism") of the Event Representation Language to produce a
set of one or more event records representing the information content of the input sen-
tence.

Feeding into this are the various analysis components, each compiled from a source text
in a language appropriate to the component. The base language for all the programs -~
except the ERL machine -~ is Forth; the respective compilers are written in FORTH and
the compiled form of the various components is the threaded code characteristic of
Forth. The ERL compiler is coded in SPITBOL, a dialect of SNOBO! 4, which was chosen
because of its excellent facilities for compiler writing.

The following are two examples showing the internal processing of sentences. The first
example shows the parse tree followed by the event record produced by the ERL
machine; the second example only shows the input sentence and the MATRES Il output.

Example 1

#>> TWO UGANDAN ACFT FROM REGIMENT A313 AT ENTEBBE DEPLOYED TO GULU
«AT 02002 ON 21 FEBRUARY.

PARSE OUTPUT:

LIST OF:

| NODE: 115§

i LIST OF:

| NODE: 2|PP

| | NODE: 4|DATE
| | | <<NIL>>

| | | 392.. FEBRUARY
I | | LIST OF¢
B R o S - |
| | | END LIST
| | END NODE

i § 352.: ON

¥)} LIST OF:

| | END LIST

| END NODE

| NODE: 2|PP

| | LIST OF:

I | | 332.. 02002
| | END LIST

b4 312« A¥

I | BISY OF:

i | END LIST

| END NODE

| NODE: 2|PP

| | NODE: 2|NP

f f I LIST OF:

| | | END LIST

| | | NODE: 5)NNOD

|
|
|
|
!
[
|
|
|
I
|
!
I
|
I
I
I
I
!
I
|
|
|
|
|
!

I
[
|
!
I
|
|
I
[
|
!
|
I
|
I
|
|
|
[
I
I
I
I
|
!

TS N A U G S W W TN — —— T —_— ——— —— —————— ——— N ———— — ——— % G ——— i = m—— W - WS Waw S — — —

T A — ——————— S —— ———— —— —_—— ——————— — ————— — — — > e — " wym e wm— W —w—— — WS Wi W = o=

— e —— — — — — —— —

END LIST
<NIL>»
<<NIL>>»
NODE:

NODE:

|
I
|
|
I
I
|
|
|
I
{
!
|
[
|
|
|
{
j
I
I
|
|
]
i
|
|

—— e ——— o — —— —

<KNIL>>
292..GULU

END NODE
| LIST OF:
{ BEND LIST
1 <<NIL>>
END NODE
272,70
LIST OF:

| END LIST
END NODE

232..

21VG

DEPLOYED

<<NIL>>
LIST OF:
END LIST
LIST OF:
END LIST
END NODE

2[NP

LIST OF:

=
Tl
I
(I
f
Il
(.
(|
o
|
|
|
|

—— — — — — ——— — — — — —— — — — —— —— — —— — — —

——— — — ———— —— —
——— ——— — — —

NGDE: 2|PP
| NODE: 2(NP

LIST OF:

END LIST

NODE: S5|NNOD

| <<NIL>>

| 212.. ENTEBBE
END NODE

LIST OF:

END LIST
<<NIL>>

END NODE
192.. AT
LIST OF:
END LIST
END NODE
NODE: 2|PP
| NODE: 2|NP

LIST OF:

END LIST

NODE: 5|NNOD

| <<NIL>>

b 178 . A313
END NODE

LIST OF:

| NODE: S|NNOD
i} <<NIL>>

1-39

| | | | 182.. REGIMENT
| | | END NODE

| | END LIST

I | <<NIL>>

| END NODE

| 152.. FROM

| LIST OF:

i END LIST

| END NODE

END LIST

NODE: SINNOD

| <<NIL>>

| 132..ACFT

END NODE

LIST OF:

| 112.. UGANDAN

END LIST

NODE: 2|DP

| LIST QF:

| 1 92.. TWO

| END LIST

] <<NIL>>»

| <<NIL>>»

| END NODE

| END NODE

| END NODE

END LIST

Event: DEPLOY

Object:

... EQuipment= UGANDAN ACFT
...Nationality= UGANDAN
...5ubordination= FROM REGIMENT A313 &
...Stagingbase= AT ENTEBBE

... Number= TWO

Destination= TO GULU

Time= AT 02002

Date= ON 21 FEBRUARY £
EVENT RECORD COMPLETE. i

[
l
|
|
I
I
I
|

——— — —— —— —— —— ——— ——— — ———— — —
———— —— ———— — — —— — ——— ——————— —
—— —— ——— —— ———— — —— ——— —— — f—

Example 2

#PRTREE OSET

#>> THE TWO ACFT WERE ENROUTE TO NAIROBI ON RECONNAISSANCE.
Event: ENROUTE

Object:

«+. EQuipment= ACFT

... Number= TWO

Mission= ON RECONNAISSANCE

Destination= TO NAIROBI

EVENT RECORD COMPLETE.

1-40

4.3 Linguistic Grammar and Lexicon for Aircraft Domain

4.3.1 The Grammar. In this section we give an informal description of the major gram-
matical constituents which are recognized by the MATRES II parser, and of the analyses
which are given them. The parser itself is described in section 4.4

4.3.1.1 The Declarative Sentence. A declarative sentence may be a simple sentence, as
in (1), or it may be a simple sentence conjoined by a sentence conjunction with another
simple sentence (of a special type) or with a noun phrase, as in (2) and (3).

(1) THE AIRCRAFT WERE ENROUTE HOMEBASE AT 0200Z.

(2) THE AIRCRAFT WERE ENROUTE HOMEBASE AT 0200Z AFTER
CONDUCTING A RECONNAISSANCE MISSION QVER THE RED SEA.

(3) THE AIRCRAFT WERE ENROUTE HOMEBASE AT 0200Z AFTER
A RECONNAISSANCE MISSION OVER THE RED SEA.

The MATRES |l grammar analyzes a declarative sentence as a list having as its first ele-
ment a simple sentence, which may be followed optionally by a sentence conjunction and
either another simple sentence or a noun phrase.

4.3.1.2 The Simple Sentence. A simple sentence has a noun phrase subject followed by
a verb group, optionally followed by a direct object, a compiement, ahd one or more
post-verb modifiers.

The grammar analyzes a simple sentence as a five-branched node structure. The first
branch points to the subject, the second branch to the verb group, the third to the
object, the fourth to a complement, and the fifth to a list of adverbial modifiers.

4.3.1.3 The Noun Phrase. A noun phrase may consist of a determiner followed by a list
of pre-head modifiers, a head noun, and a list of post-head modifiers.

A determiner may consist simply of an article (eg. ‘THE'), a quantifier (eg. ‘ALL’), or a
number phrase (eg. ‘AS MANY AS SIX’), or it may be a complex structure involving two or
three of these constituents, as in (4) through (7).

(4) ALL THE AIRCRAFT

(5) ALL SIX AIRCRAFT
(6) THE SiX AIRCRAFT

(7) ALL OF THE SIX AIRCRAFT

Pre-head modifiers may include adjectives, nouns, past participles, and present partici-
ples. In the aircraft domain, head nouns are typically preceded by several modifiers
referring to attributes such as nationality, subordination, equipment type, etc., as in (8).

(8) RETURNING UGANDAN UBBC SR-71 AIRCRAFT

Possible post-head modifiers are relative clauses, reduced relative clauses, and prepo-
sitional phrases. An example of each is given in (9) through (11), respectively.

1-41

(9) THE AIRCRAFT WHICH WERE STAGING FROM ENTEBBE
(10) THE AIRCRAFT STAGING FROM ENTEBBE

(11) THE AIRCRAFT FROM ENTEBBE

A noun phrase is analyzed as a four-branched node. The first branch points to a deter-
miner (possibly null, as in (8)), the second to a list of pre-head modifiers, the third to the
head noun, and the fourth to a list of post-head modifiers.

As a heuristic device, we allow only simple noun phrases (i.e., those without post-head
modifiers) to occur as direct objects or prepositional objects. The reason for this is
best illustrated by an example. In (12), we wish to analyze the relative clause ‘WHICH
CONDUCTED OPERATIONS OVER THE RED SEA’ as a post-head modifier of ‘AIRCRAFT’
rather than ‘ENTEBBE’. This is effected by requiring that ‘ENTEBBE’, which is a preposi-
tional object, have no post-head modifiers.

(12) THE AIRCRAFT FROM ENTEBBE WHICH CONDUCTED OPERATIONS
OVER THE RED SEA

Likewise, in the embedded sentence, by requiring that the object of ‘CONDUCTED’ be a
simple noun phrase, we achieve the desired analysis of ‘OVER THE RED SEA’ as an
adverbial modifier, rather than a post-head modifier of ‘OPERATIONS’.

4.3.1.4 The Verb Group The verb group may consist of an auxiliary followed by a verb,
as in (13), or an auxiliary followed by a copula followed by an adjective, as in (14).

(13) HAVE BEEN CONDUCTING

(14) HAVE BEEN ACTIVE

In (13) the auxiliary is ‘HAVE BEEN’, while in (14) the auxiliary is ‘HAVE’, and ‘BEEN’ is the
copula.

Some verbs (eg. ‘CONDUCT’, 'PENETRATE’) must be followed by a direct object consti-
tuent, which is another noun phrase. Other verbs (eg. ‘ARRIVE’) never have a direct
object, while for others (eg. ‘OPERATE’) the object is optional.

Adverbial modifiers include prepositional phrases and adverbs, and may occur before he
subject, as in (18), after the verb (and the object, if there is one) as in (16), or embed-
ded within the verb group, as is the case with ‘CURRENTLY' in (17).

(15) AT 0200Z ON 22 FEBRUARY, THE AIRCRAFT PENETRATED ENEMY AIRSPACE.
(16) THE AIRCRAFT FLEW NORTH OVER THE INDIAN OCEAN.

(17) THE AIRCRAFT ARE CURRENTLY ACTIVE OVER THE RED SEA.

4.3.1.5 Adverbials. Pertaining to adverbial modifiers, there are several constructions
which are peculiar to our particular message domain. Principle among these are time
phrases and date phrases, which, along with noun phrases, are accepted as preposi-
tional objects. Some examples of time phrases are given in (18) through (20).

1-42

e

Ip———_

(18) 02007
(19) 0200-04007

(20) 02007 1O 04002

Date phrases are analyzed as three branched nodes. The first branch points to the day,
the second to the month, and the third to the year (the third is often null). Some exam-
ples are given in (21) through (23).

(21) 22 FEBRUARY
(22) 22 FEBRUARY 74

(23) THE 22ND FEBRUARY

4.3.1.6 Passive Sentences. A sentence such as (24) can be paraphrased as (28),
where the logical subject becomes the grammatical object, and the logical object
becomes the grammatical subject.

(24) DURING THE 02007 HOUR, FOUR AIRCRAFT FROM RGT XB412
CONDUCTED COMMAND-AND-CONTROL OPERATIONS.

(25) DURING THE 02007 HOUR, COMMAND-AND-CONTROL OPERATIONS
WERE CONDUCTED BY FOUR AIRCRAFT FROM RGT XB412.

The MATRES Il grammar reverses the passive transformation, so that the analyses of
(24) and (25) are identical, with ‘FOUR AIRCRAFT FROM RGT XB412' as the subject and
‘COMMAND-AND-CONTROL OPERATIONS' as the direct object.

4.3.2 The Llexicon. The MATRES Il lexicon is designed to support the grammatical
analysis procedure. It consists of two parts:

(i) a collection of lexical entries in the form of static
declarations of lexica! items and their attributes, and

(i) a listing of the features or attributes emploved by the
system.

The attributes fall into several classes. £ xamples of each are given below.

(i) Major Grammatical Category Specifications.

ADVB (adverb)
ADJ (adjective)
ART (article)
NUM (number) i
N (noun) i

(ii) Lexical Features:

DIR (directional)

LOC (locational)

SUBNUM (subordination number)
TENSED (marks tensed verbs)

e niile

(iii) Event Category Features:

ARRIVE
CONTINUE
DEPART
DEPLOY

A portion of the lexicon is given in figure 4-2, and a complete listing is given in Appendix
C.

W FLEET[NSG] .;

i FLEW [VB TRANS TENSED DIR FLIGHT]
¢t FLIGHT [N SG NOMZ]

:: FLIGHTS [N ™ NOMZ] .;

i FLOGGER [N NA7O ACRAFT] ;
:: FODDER [N NATO ACRAFT] ;
:: FOLLOWING [SCONJ] ;

:: FOR [PREP]

:: FOUR [NUM] .

1t FRESCO [N NATO ACRAFT] ;
:: FROM [PREP] .;

:: GENERAL [ADJ] .,

::GROUP[N]

Figure 4-2. Sample Lexical Entries
4.4 The MATRES Il Parser

4.4.1 General Description. The MATRES Il system uses an augmented transition network
(ATN) parser based on Woods (1970, 1973), The general features of ATN parsers have
been discussed in detail in previous OS! reports (RADC-TR-75, RADC-TR-77-194). In
this section we review a few of these features with particular attention to their imple-
mentation in the MATRES |l system.

An ATN grammar consists of a finite set of states connected by labeled directed arcs.
Associated with each aic is a set (possibly null) of conditions and actions. The arc
represents a transition from the state at its tail to the state at its head, which may be
made if the appropriate conditions are met. When such a transition is made, the actions
associated with that arc are executed.

In addition to the above components, there is also a push-down store (to be explained
below in connection with PSH arcs) and a set of registers, including the special register
¥, which usually contains the current input symbol of the string being par-ed.

An input string is processed from left to right, becinning at the leftmost symbol of the
string and a designated initial state. As transitions are made through the net, the input
string is advanced, so that the current input symbai is in turn the first symbol of the
Input string, the second, and so on. A sentence is accepted when a final state, an
empty push-down store, and the end of the input string are all achieved simultaneously.

1-44

—p e egp— =

At this point the reader may wish to refer to the diagrams of the ATN grammar given in
figures 4-3 through 4-23, and the grammar listing given in Appendix D.

4.4.1.1 Arc Types. There are five different arc types in the MATRES Il grammar. The
operation of these arcs is described informally in what follows. For a formal definition of
the MATRES Il grammar language, see part Il.

A CAT arc may be taken if the current input symbol belongs to the category (or
categories) specified by the arc label (and if the condition associated with that arc is
satisfied). For example, a transition via an arc labeled ‘CAT [ADJ]' may be made only if
the current input symbol belongs to the category ADJ (i.e., has the feature ADJ). When
a transition is made via a CAT arc, the input string is advanced to the next symbol.

Transition via a WRD arc is permitted just when the current input symbol is identical to
the word specified by the arc. For example, an arc labeled ‘WRD " BY"' may be taken
only if the current input symbol is ‘BY'. The input string is then advanced to the next
symbol.

A TST arc may be taken if the the condition associated with that arc is satisfied. Condi-
tions are described in more detail in the next section, but an example should suffice to
give the general idea. Transition via an arc labeled ‘TST * [N] * [ADJ] OR’ is permit-
ted when the contents of the register ¥ (the current input symbol) is a member of either
the category N or the category ADJ. The input string is advanced to the next symbol.

A PSH arc transfers control to the state named by the arc label, while the state at the
head of the arc is saved on the push-down store. For example, the arc “:PSH TO NP/ =>
S/SUBJ ,,' has the effect of transferring control to state NP/ and placing state S/SUBJ
on top of the push-down store. When a POP arc is taken, control is transferred to the
state at the top of the push-down store, and that state is removed from the push-down
store. PSH and POP arcs do not advance the input string.

A JUMP arc permits a transition to the state named by the arc label without advancing
the Input string. For example, the arc “:JUMP S/OBJ ,,' transfers control to state S/0BJ
with the current input symbol remaining the same.

4.4.1.2 Conditions. A condition may be used to test the contents of a register for a
given feature, numerical value, or lexical item. For example, the condition ‘¥ [RELPRO |’
is satisfied just when the current input symbol has the feature RELPRO, and the arc
““PSH ¥ [RELPRO] !' TO R/ => POSTMODS/P ,,' may be taken under exactly the same
circumstances. The condition ‘PASSIVE GETR 1 ='is satisfied just in case the contents
of PASSIVE is 1, and the condition ‘¥ " BY"' is satisfied just when the current input sym-
bol is the lexical item ‘BY".

Conditions may be formed by combining tests of the sort described above with the
Boolean operators ‘AND’ and 'OR'. for example, the condition ‘PASSIVE GETR 1 = % " By"
AND’ is satisfied just in case the contents of PASSIVE is 1 and the current input symbol
is ‘BY".

4.4.1.3 Actions. The action functors ‘SETR' and ‘GETR' are used for filling registers and
retrieving the contents of registers, respectively. For example, the action ‘% PRIEPRG
SETR' stores the current input symbol in the reqgister PREPRG.

The structure-building functors ‘ADDLIST' and ‘NODE' are used to build lists and nodes,
respectively. For example, the action '* SENT ADDLIST' takes the contents of the regis-
ter ¥ and adds it to the list SENT. The action 'PREPRG GETR OBJ GETR PP NODE' builds a

e H‘nmr :m' ’

two-branched node labeled ‘PP', the first branch of which points to the contents of
PREPRG and the second of which points to the contents of OBJ. Notice that the functor
‘GETR’ is used to retrieve the contents of the registers.

In connection with PSH and POP arcs we must distinguish between “"pre-actions" and
"post-actions". A pre-action on a PSH arc is executed before control is transferred to
the state named on the arc label, while a post-action is executed when control is
"popped" to the state named at the head of the PSH arc. For example, when a transi-
tion is made via the arc ‘:PSH PASSIVE SENDR TO S/VG * SENT ADDLIST => DCL/S ,,’, the
action ‘PASSIVE SENDR' (to be explained below) is executed before computation begins
at state S/VG. The action ‘* SENT ADDLIST' is executed when control is popped to
state DCL/S. It should be mentioned here as well that upon returning from a "push", the
register * contains whatever structure is named by the preceding POP arc. For
instance, if in the example given above control had been popped to state DCL/S by the
arc “:POP SUBJ GFTR VP GFTR S NODFE ' then ¥ would contain a two-branched node
labeled ‘S’, and this Is the structure which would added to the list SENT by the post-
action ‘¥ SENT ADDLIST".

The functors ‘SENDR' and ‘SENDL' are used to send a value to a register or a list at a
lower level of computation. For example, when a transition via the arc “:PSH VMODS
SENDL TO VM/ => §/S ' is made, computation begins at state VM/ with the list VMODS
containing exactly what it did at the state from which the push was made (normaily lists
and registers are empty upon entry into a lower level of computation). ‘SENDR' and
‘SENDL' are used only as pre-actions on PSH arcs.

The functors ‘RETR' and '‘BFETL" are used only as post-actions on PSH arcs,e and are
complementary to ‘SENDR' and ‘SENDL’" in that they retrieve register and list values from
a lower level of computation at the time of a pop from that level. Consider, for example,
the arc “:PSH VMODS SENDL TO VM/ VMODS RETL => §/S,,'. Upon popping to state S/S,
VMODS contains whatever it contained before the push to VM/, in addition to whatever
was added to it at the level of VM/

4.4.2 The Parsing Strategy. In this section a series of examples is used to describe the
manner in which certain grammatical constituents are processed by the MATRES Il ATN
parser. The following notation for output structures is employed throughout: List ele-
ments are enclosed in square brackets and separated by commas. The entities pointed
to by the branches of a node are enclosed in parentheses and separated by commas,
with the node label preceding the left parenthesis. Lexical units are enclosed in single
quotation marks.

4.4.2.1 The Declarative Sentence. The transition network for declaratives (see Figure
4-3 and Appendix D) accepts sentences consisting of a simple sentence followed
optionally by a sentence conjunction and either another simple sentence or a noun
phrase. It returns a list having as its first member an S (sentence) node, which may be
followed by a sentence conjunction and either another S node or an NP (noun phrase)
node. For example, given (1), the declarative net returns the structure given in (2).

(1) THE AIRCRAFT WERE ENROUTE HOMEBASE AFTER
CONDUCTING OPERATIONS OVER THE RED SEA.

(2) [S(THE AIRCRAFT WERE ENROUTE HOMEBASE),
‘AFTER',
S(CONDUCTING OPERATIONS OVER THE RED SEA)]

r————-—-—-——-———-—-——-————————-

(1) is parsed by the declarative net as follows:

4.4.2.1.1 State DCL/. At state DCL/ (the initial state of the ATN parser) arcs 1 and 2
are attempted, and both fail. The condition on arc 1 requires that the contents of the
register RELF be 1, which is the case only when a relative clause is being parsed. Simi-
larly, the condition on arc 2 is satisfied just when a reduced relative clause is being
parsed. Arc 3 succeeds, and control is pushed to the sentence net at state S/. ‘THE
AIRCRAFT WERE ENROUTE HOMEBASE' is recognized as a sentence, and an S node is
returned to the declarative net where it is added to the list DCL. Control then passes to
state DCL/S with ‘AFTER' as the current input symbol.

4.4.2.1.2 State DCL/S. At state DCL/S, arc 1 is taken, since ‘AFTER' has the feature
SCONJ (sentence conjunction). ‘AFTER' is added to DCL, the input string is advanced to
‘CONDUCTING', and control is transferred to state DCL/CONJ.

4.4.2.1.3 State DCL/CONJ. Arc 1 at state DCL/CONJ succeeds, since ‘CONDUCTING'
has the feature PRESP (present participle). Control is pushed to the sentence net at
state S/SUBJ, and ‘CONDUCTING OPERATIONS OVER THE RED SEA' is recognized as a sen-
tence (i.e., one with a null subject). An S node is returned to the declarative net and
added to the list DCL. Control then passes to state DCL/S with the end-of-sentence
marker as the current input symbol.

4.4.2.1.4 State DCL/DCL. This time arc 1 at state DCL/S fails, so arc 2, a jump to
DCL/DCL, is taken. At state DCL/DCL the list DCL, which has the form given in (2), is
popped.

To take another example of a slightly different form, consider (3).

(3) THE AIRCRAFT WERE ENROUTE HOMEBASE
AFTER OPERATIONS OVER THE RED SEA.

In parsing (3), state DCL/CONJ is reached with ‘OPERATIONS' as the current input sym-
bol. This time arc 1 at DCL/CONJ fails, since ‘OPERATIONS' is not a present participle,
and arc 2, a push to the noun phrase net, is taken. ‘OPERATIONS OVER THE RED SEA' is
recognized as a noun phrase, and an NP node is returned to the declarative net and
added to DCL. The list popped at state DCL/DCL will have the form given in (4).

(4) [S(THE AIRCRAFT WERE ENROUTE HOMEBASE),
‘AFTER’,
NP(OPERATIONS OVER THE RED SEA)]

4.4.2.2 The Simple Sentence. The sentence grammar (see Figure 4-4 and Appendix D)
accepts sentences composed of subject, verb group, direct object, complement, and
various adverbial post modifiers. It returns a node labeled ‘S’ which has five branches.
The first branch points to the logical subject, the second to the verb group, the third to
the direct object, the fourth to the complement and the fifth to a list of "verb maodifiers".
Given (5), for example, the sentence net returns the structure in (6).

(6) AT 02007 21 FEBRUARY THREE EGYPTIAN AIRCRAFT FROM RGT
XB412 WERE CONDUCTING OPERATIONS OVER THE RED SEA.

(6) S(NP(THREE EGYPTIAN AIRCRAFT FROM RGT XB412),
VG(WERE CONDUCTING),
NP(OPERATIONS),
0,
[AT 02002, 21 FEBRUARY, OVER THE RED SEA])

(5) is parsed by the sentence net as follows:

4.4.2.2.1 State S/. From state S/, control passes via arc 1 to state PP/, the initial
state of the prepositional phrase net. ‘AT 0200Z' is recognized as a prepositional
phrase, and a PP node is returned to the level of the sentence net, where it is added to
the VMODS list. Control returns to state S/, with ‘21’ as the current input symbol.

Back at state 5/, another push to the prepositional phrase net is attempted via arc 1,
but this time the push fails. Arc 2, a push to the date net, is attempted, and succeeds,
with ‘21 FEBRUARY' being recognized as a date. An appropriate structure is returned to
the sentence net, where it is placed in the VMODS list. Control passes again to state S/
with ‘THREE" as the current input symbol.

Arcs 1 and 2 at state S/ are attempted in order again, and both fail. Control passes via
arc 3, a jump arc, to state S/PP. The current input symbol is still ‘THREE".

4.4.2.2.2 State S/PP. At state S/PP, a push is made to state NP/, the initial state of
the noun phrase net. ‘THREE EGYPTIAN AIRCRAFT FROM RGT XB412' is recognized as a
noun phrase, and an NP node is built and returned to the sentence net, where it is
stored in the register SUBJ. Control then passes to state S/SUBJ with ‘WERE' as the
current input symbol.

4.4 2.3 State S/SUBJ. The arc at state S/SUBJ is a push to the verb group net.
‘WErhe CONDUCTING' is recognized as the verb group, and a VG node is returned and
stored in register VGRG. Additionally, the registers PASSIVE and VHRG are raised by the
post-actions PASSIVE RETR and VHRG RETR from the level of the verb group net to that
of the sentence net, in order that they may be used to perform tests on the arcs at
state S/VG. The value of PASSIVE is either O or 1 according to whether the sentence is
active or passive (in the case of (1) the value of PASSIVE is 0), and VHRG contains the
verb head.

4.4.2.2.4 State S/VG. From state S/SUBJ control passes to state S/VG with ‘OPERA-
TIONS' as the current input symbol. Arc 1 at S/VG is a push to the agent net, with the
condition that the contents of PASSIVE be 1 and that the current input symbol be ‘BY'.
This clearly fails, as does arc 2, which also requires that the contents of PASSIVE be 1.
Arc 3 is a push to the simple noun phrase net (state SNP/), with the condition that the
contents of Passive be 0 and that the contents of VHRG have the feature TRANS (tran-
sitive). ‘CONDUCTING' is transitive, so control transfers to state SNP/. 'OPERATIONS' is
identified as a simple noun phrase, and an NP node is built and returned to the sentence
net, where it is stored in the register OBJ. Control then passes to state S/0BJ with
‘OVER' as the current input symbol.

4.4.2.2.5 State S/0BJ. The arc at state S/OBJ is a push to the verb modifier net, so
control passes to state VM/. The pre-action on this arc sends the list VMODS, which
already contains ‘AT 020027" and ‘21 FEBRUARY', down to the level of the verb modifier

el kPl e A i

net. ‘OVER THE RED SEA' is recognized as a verb modifier (more specifically, a preposi-
tional phrase) and added to VMODS, which is raised to the level of the sentence net by
the post-action VMODS RETL. Control then passes to state S/S.

4.4.2.2.6 State S/S. The pop arc at S/S builds a five-branched node labeled ‘S’. The
first branch points to the contents of SUBJ, the second to the contents of VGRG, the
third to the contents of OBJ, the fourth to the contents of COMPL, and the fourth to the
VMODS list.

4.4.2.3 The Noun Phrase. The noun phrase grammar (see Figure 4-5 and Appendix D)
accepts complex noun phrases with pre and post head modifiers, including adjectives,
prepositional phrases and relative clauses (both full relatives, i.e. those that contain
relative pronoun, and restricted relatives. It returns a four-branched node labeled ‘NP'.
The first branch points to a determiner phrase, the second to a list of pre-head modif-
iers, the third to the head noun, and the fourth to a list of post-head modifiers. Given
(7), for example, the noun phrase net produces the structure given as (8).

(7) THE FOUR SR-71 RECONNAISSANCE AIRCRAFT FROM REGIMENT
XB412 WHICH DEPARTED HOMEBASE AT 0200Z WERE ENROUTE...

(8) NP(DP(THE FOUR),
[SR-71, RECONNAISSANCE],
N(AIRCRAFT),
[FROM REGIMENT XB412, WHICH DEPARTED HOMEBASE AT 0200Z])

(7) is parsed by the noun phrase net as follows:

4.4.2.3.1 State NP/. At state NP/ control is pushed to state SNP/, the initial state of
the simple noun phrase net. In our terminology, a simple noun phrase is one which has no
post-head modifiers, i.e., one which consists of at most a determiner phrase, a list of
pre-head modifiers, and a head noun. ‘THE FOUR' is recognized by the simple noun
phrase net as a determiner phrase, ‘SR-71’' and ‘RECONNAISSANCE’ as pre-head modif-
iers, and ‘AIRCRAFT’ as the head noun. These structures are stored in DPRG, PREMODS,
and HNRG, respectively, which are raised to the level of the noun phrase net by the
post-actions on the push arc. Control then transfers to state NP/SNP, with ‘FROM’ as
the current input symbol.

4.4.2.3.2 State NP/SNP. The arc at state NP/SNP is a push to the post-head modifier
net. ‘FROM REGIMENT XB412' and ‘WHICH DEPARTED HOMEBASE AT 0200Z' are recog-
nized as post-head modifiers and added to the list POSTMODS, which is raised by the
post action ‘POSTMODS RETL’ to the level of the noun phrase net. Control then passes
to state NP/NP with ‘WERE’ as the current input symbol.

4.4.2.3.3 State NP/NP. The pop arc at state NP/NP builds a four-branched node
labeled ‘NP’ The first branch points to the contents of DPRG, the second to the list
PREMODS, the third to the contents of HNRG, and the fourth to the list POSTMODS.

4.4.2.4 The Verb Group Net. The verb group grammar (see Figure 4-6 and Appendix D)
accepts the main verb, its auxiliaries and any associated evaluative adverbs. It returns
a node labeled ‘VG' which has four branches. The first branch points to a list of evalua-
tive adverbs (eg. ‘POSSIBLY’, or ‘PROBABLY"), the second to the verbal auxiliary (also a
list), the third to a copula, and the fourth to the verb head. Given (9), the verb group
net returns the structure in (10).

1-49

(9) ...HAVE POSSIBLY BEEN CONDUCTING FLIGHTS OVER THE RED SEA.

(10) VG([‘POSSIBLY'],
[*HAVE','BEEN'],
0,
‘CONDUCTING")

(9) is parsed by the verb group net as follows:

4.4.2.4.1 State VG/. The arc at state VG/ is a push to the auxiliary net. ‘HAVE' and
‘BEEN’ are recognized as auxiliary elements and placed in the list AUX, and the evalua-
tive adverb ‘POSSIBLY' is placed in the list ADVBLST. AUX and ADVBLST are raised to the
level of the verb group net by the post-actions AUX RETL and ADVBLST RETL, and control
passes to state VG/AUX with ‘CONDUCTING' as the current input symbol.

4.4.2.4.2 State VG/AUX. Arcs 1 and 2 test for the features COPULA and BE, respec-
tively, and both fail, since ‘CONDUCTING' has neither of these. Arc 3 succeeds, and
‘CONDUCTING' is stored in the register VHRG. Controi then passes to state VG/VH.

4.4.2.4.3 State VG/VH. The pop arc at VG/VH builds a four-tranched node labeled ‘VG'.
The first branch points to the list ADVBLST, the second to AUX, the third to the contents
of CPRG (which in this case is empty), and the fourth to the contents of VHRG.

For (11), the verb group net returns the structure given in (12), and the parsing
proceeds as follows.

(11) ...HAVE BEEN ACTIVE OVER THE RED SEA.

(12) VG([],["HAVE'],'BEEN’",'ACTIVE")

4.4.2.4.4 State VG/. This time the push to the auxiliary net returns an AUX list with
‘HAVE' as its only member. ‘BEEN’ is determined not to be an auxiliary element, since it is
not followed by a progressive verb form. Control passes to state VG/AUX with ‘BEEN' as
the current input symbol.

4.4.2.4.5 State VG/AUX. Arc 1 at state VG/AUX tests for the feature COPULA. ‘BEEN’
has this feature, so the transition is made to state VG/COP and '‘BEEN’ is placed in the
register CPRG. The current input symbol is now ‘ACTIVE'.

4.4.2.4.6 State VG/COP. Arcs 1 and 2 at VG/COP test for adverbs, so both of these
fail. Arc <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>